

THE LIBRARY

> OF

THE UNIVERSITY
OF CALIFORNIA LOS ANGELES

NAIIEIR OF MERCHHSTON

$$
\begin{aligned}
& \text { fismelecrects ". Hunse's Hils. vol.vir } p \text {. }
\end{aligned}
$$

A Clllll of Till

i，IFE，WRITINGS，and INVENTIO iNS

$$
O F
$$

JOHN NAPIER，
0 F
－MFRCHISTON；

$$
B \mathrm{Y}
$$

DAVID STEWART，EARL of BUCHAN，

$$
\Lambda N D
$$

WALTER MINTO，L．I．I）．

JLLUSTRATED H＇ITHCOPIERALATIS

$$
\mathrm{P} \text { E K T I : }
$$

PRINTEDEYR．NORISON，JL゙Nス．
IOR R．MORISON AND SON，DOOKSFIIERS；IND SOID BY G．G．J． AND J．ROBINSN，PATER－N゙OSTER－ROW，I．ONDON゙；

AND W：CRELCH，LDIN゙BURGH．
M，DCC，IズXXVII．

$$
\begin{array}{llll}
& \text { TO THE } & \\
\mathrm{K} & \mathrm{I} & \mathrm{~N} & \mathrm{G} .
\end{array}
$$

SI R,
As the writings of Archimedes were addrefied to the King of Sicily, who had perufed and relifhed them, fo I do myfelf the honour, to addrefs to Your Majefty, the following account of the Life, Writings, and Inventions of our Britilh Archimedes, in which, I can claim no other merit, than having endeavoured to call forth and illuftate the abilities of others. I feel great pleafure, in dedicating this Tract to Your Majefty, after the chafte and dignified model of Antiquity, beflowing on the King, the merited encomium, of having promoted the Sciences and Arts, with which it is connected; and in affuring Your Majefty, that I am, with the greatelt reflect,
Your MaJesty's

> Molt dutiful Subject, an!
Obedient humble Servant,

$$
B \cup C H A N .
$$

ADVERTISEMENT.

ABOUT twenty years ago, Ithought it zoould be cafy to bring together a groupe of learned men, zubo zuould dedicate a part of their leifure to ercet litcrary monuments to the memory of their illuftrious countryncen, subofe lives bad not bccn bitberto written or fufficiently illuftrated; and I wifhed fich monuments to be fafbioned and cxccuted by men perfonally eninent in the departments zubich difinguifloed the fubjects of their biograpbical refearch, and not by the afjefants of a bookfeller or compiler, who cannot be expectcd, bowever faithful and accurate, to be animated witb that love to the fubject, which the Italian Artift rigbtly confiders as the foul of bis cnterprize, and the fource of its perfection.

In this expectation I bave been difappointed; and though I allo:0 the liigherf nerf: to the Britifh Biography, nowu republifing by Dr Kippis, yet in the imnenfe cxitent of fuch an undertaking, I perceive the impoffibility of its reaching the perfedion I bave propofed, without the addition of fupplenentary articles and conn:cctions, webich wo:thl bave becn in a great meafure unnecefary, bad my plan been aclopted; becaufe the articles, being wuritton with care and with zeal, So as to Jupport thanflwes in an ijolated flate by the public favour, would aficrzards bave been taken up by fubscquenis editions into that great repofitory of biographical learning, in a bigbly finifoed fate, and purged of the errors which are umavoidable, in the firft fabric of acorks of that noture.

With rejpect 10 the b:opraphy of Scotland, one of the juldes there, zulio would buve dive it boncur in its lecf days, by bis virtuc, bis attention to the dignity and duties of bis juation, and the ufiful cmployment of his leifure, bas sencroully offered, by ain advertifement annexad to the Amsals of the Lives of Yobn Barclay, Autbor of Arccris, and fome other learned Scots, to forward the undertaking I weifls to promotc.

Encouraged by the affifarice of an afociata, fo able and fo libcral, I bave prefunced to offir the following Biographical Tract to the public, as my mite to a Trcafury, which I bope to foe enricbed lyy many, zebo laze the ability and the genercfity of my' reppectublc coadjutcr. It acis indeed by that cicelicht man, that I was originally encouraged to profecute refearches of this nature. He applauded that difpofition in a young man of quality, which leads bim to the feud'y of the bifory of his own country, not in pampllits, Jatires, apologies and panegurics, but in the privale undignuifed corvefpondence of the great.

A man who fudies hiflory in this way, weill fee that the fame cbaracters are reprefonted by different actors: introduced belind the fcenes, be woill fee folly dreffing itfelf in the garb of wiflom, and Selfifluefs affuming the mafie of public Spirit ;- and among the laarned, the plagiary fcaling away the laurels of the modeft inventor. He will fce groat evonts arifing from inconfiderable caules, and men ncither diwils nor angels, but a compofition of good and bad qualitiss, fuch as the men of the world can fee thein cuery day in common life.

I falter mysif, that this article of Napier, in tbe Biographia Scotica, will be confider. ad in fone refpccte, as a fpecimen of the plan I bave deferibed, for it certainly bas bien ecritten con amore. In the fcientific part I lare received the afiftance of a gentioman, who deferecs to be better known, on account of his mathematical learning, and the accuracy with rubich the treats the fubjects of lis inguiry.

[vii]

If the following publication, foall bave the good fortune to mect with the approbation of the learned soorld, 'tis my intention, to give an account of the lives and writings of Andrewo Fletcher of Salton, and Folne Law of Lawicfeon, on the fame plon. The firft undertaking woill furnifb me an opportunity, of reprcfonting the ancient confitutish: of Scolland, in wubat I apprebend to be a cluarer light, than bas bitborto bech offired; and of treating the caufis and confonunces of the union between tbe two kingions: and the otber will cpen an ample fich for exbibiting the diforders in the finances of France, occafioned by the c.ipenfive wars of Lewis the fourtcenth, and the Mififitpi Scheme, and for cxplaining by zubat means they bave been gradually remedied and brought to a fate, zubich bas enabled that nation, not only to bring ber naval force and ber trade to a dangerous rivalbjip scith this country, but to obtain that credit, by good faith, which in former timos, bad given fo decided a fuperiority to Britain. I am very fenfible that there are many men in this country much better qualificet for perforning thefe tafis than I ame, and I think it an bonour to enjoy their friendfois: but men of great reputation generally feck for reft in the cerning of life, and avoid $\epsilon \mathrm{s}$. finfing their laurels to the bluft of envy, in their declining years.

Thefe, I hope, weill be accepted as fufficient apologies, for my venturing to occupy fu-b sround, and I leg leave to invite my lcarned comntrymch, to aid me in fo noble all undertaking, as that of raifing monmmonts to the momory of the illuftrious dead.

I bave only to add, that if the Scparate lives of illuffrious perfons, Soould lee ecrittens on the plan I prcpofe, and zecre accompanied by portraits, clegantly engraven by the le.fa arifts, and the zubole cxecuted in a fimilar manncr, of the fame Suarto fizc, and :cith the farne Type and Paper, they would gradually form the noblef work, whicich Jas b.con officed to the republic of letters, in any age or cotutry.

A N

$$
\begin{aligned}
& \text { A C C O U N T } \\
& \text { of the } \\
& \text { LIFE, WRITINGS, and INVENTIONS, } \\
& 0 \text { F } \\
& \text { J O H N N A P I ER, } \\
& 0 \text { F } \\
& \text { MERCHISTON. }
\end{aligned}
$$

IHave undertaken to write the Life of John Namer, of Merchifton, a man famous all the world over, for his great and fortunate difcorery of Logarithms in Trigonometry, by which the eafe and expedition in calculation, have fo wonderfully aflifted the Science of Aftronomy, and the arts of practical Geometry and Navigation.

Elevated above the age in which he lived, and a benefactor to the world in general, he deferves the epithet of Great.

Napier lived in a country of proud Barons, where barbarous hofpitality, hunting, the military art, and religious controverfy, occupied C the
the time and attention of his contemporaries, and where he had no learned fociety to affift him in his refearches.

This extraordinary perfon was born at Merchifon, in the neighbourhood of Edinburgh, in the year 1550\%.

He was the Son of Sir Archibald Napier, of Merchifton, Mafter of the Mint in Scotland, and of Janet Bothwell, daughter of Mr Francis Bothwell, one of the Scnators of the college of Juftice \dagger.

That his family was of ancient eftablifhment in the countics of Dunbarton and Stirling, appears from the public records, and from the private archieves of his houfe.

Joun de Napier, from whom he fprung in the 12 th generation, was one of thofe proprietors of lands, who fwore allegiance to Edward the firf, of England, in the year 1296 . William, from whom he counted in the ninth generation, was Governor of the Caftle of Edinburgh, in the year 1401, whofe fon Alexander, was the firft Baron or Laird of Merchifton, and was the Father of another of the fame name, who was Vice Admiral of Scotland, and one of the Commiffioners from king James the third, at the court of London, in the years 1461 and 1464 .

From the family of Lennox, Earl of Lennox, he derived a coheirfhip by the marriage of Elizabeth Mentieth, of Rufky, to his great-grandfather's

* As appears by an infcription on his portrait, engraved by old Cooper, from an original painting. \dagger Craufurd's Peerage,
father's father, Sir John Napier, of Merchifton: but on his anceftors he refiected more honour and celcbrity than he received, and his name will probably be famous, when the lineage of Plantagenet will be remembred only by genealogifts, and when pofterity may know no more of his, than we now know of the familics of Plato, Ariftotle, Archimedes, or Euclid.

IT is fit, that men fhould be taught to aim at higher and more permanent glory than wealth, office, titles or parade can afford; and I like the tafk, of making fuch great men look little, by comparing them with men who refemble the fubject of my prefent enquiry.

From Napier's own authority, we learn, that he was educated at St. Andrews*, where writes he, "in my tender years and bairn-age, at "fchools, having on the one part contracted a loving familiaritie with " a certain gentleman a papift, and on the other part being attentive to " the fermons of that worthy man of God, Maifter Chriftopher Good" man, teaching upon the Apocalyps, I was moved in admiration againft " the blindnefs of papifts that could not moft evidentlie fee their feven " hilled Citie of Rome, painted out there fo lively by Saint John, as the " Mother of all Spiritual Whoredome: that not onlic burfted I oute in " continuall reafoning againft my faid familiar, but alfo from thence" forth I determined with myfelf by the afliftance of God's fpirit to "employ my ftudy and diligence to fearch out the remanent myfteries " of that holy booke (as to this houre praifed be the Lord I have bin "doing at all fuch times as convenientlic I might have occafion) E*c.

- Preface to his plain difcovery of the Revclation of St. John.

The time of Napier's matriculation does not appear from the RegiSter of the Univerfity of St. Andrews, as the books afcend no higher than the beginning of the laft century; but as the old whore of Babylon, affumed in the cyes of the people of Scotland, her deepeft tinge of fcarlet about the year 1566 , and as that time correfponds to the literary bairn-age of John Napier, I fuppofe, he then imbibed the holy fears and commentaries of Maifter Chriftopher Goodman, and as other great Mathematicians have ended, fo he began his career with that myfterious book.

I have not been able to trace Merchifton from the Univerfity, till the publication of his Plain Difcovery, at Edinburgh, in the year 1593*; though Mackenzie in his lives and characters of the moft eminent writers of the Scotifh nation, informs us (without quotation, however, of any authority) that he paffed fome years abroad, in the low countries, France and Italy, and that he applied himfelf there, to the ftudy of Mathematics.

In the Britifh Mufeum there are two copies of his letter to Anthony Bacon, the original of which, is in the Archbifhop's Library at Lambeth, entitled " Secret Inventions, profitable and neceffary, in thefe days, for the defence of this Ifland, and withftanding ftrangers enemics to God's truth and religion," which I have caufed to be printed, in the Appendix to this Tract. This letter is dated, Junc 7, $1596 \dagger$, about which time it appears, as fhall be fhewn hereafter, that he had fet himfelf to explore his Logarithmic Canon.

[^0]I have enquired, without fuccefs, among all the defcendants of this eminent perfon, for papers or letters, which might elucidate this dark part of his hiftory; and if we confider that Napier was a reclufe mathematician, living in a country, very inacceffible to literary correfpondence, we have not much room to expect, that the mof diligent explorations, would furnifh much to the purpofe, of having the progrefs of. his ftudies.

Among Mr Briggs's papers, preferved in the Britifh Mufeum, I looked for letters from Napier, but found only what Mr Briggs calls, his Imitatio Nepeirca, five applicatio omnium fere regularum, fuis Logaritbmis pertinentinm, ad Logaritbmos; which fecms to have been written in the year ${ }^{1614}$, foon after the publication of the Canon*.

Thougir the life of a learned man is commonly barren of event, and beft unfolded in the account of his writings, difcoveries, improvements, and correfpondence with the learned men of his age, yet I anxioully fought for fomewhat more, with refpeet to a character, I fo much admired; but my refearches have hitherto been frnitlefs. PerKaps from the letters, books, and collections of focieties or of learmed individuals, to which I have not had accefs, fomething may hereafter be brought to light: and one of the inducements, to offer a flectch of this kind to the public, is the tendency it may have to bring forth fuch information. His plain difcovery has been printed abroad, in fereral languages, particularly in French, at Rochelle, in the ycar 1603 , 8vo. anD
nounciá

[^1]nounced in the title, as revifed by himfelf *. Nothing could be more agreeable to the Rochellers, or to the Hugonots of France, at this time, than the Author's ammeriation of the Pope, as Antichrift, which in this boos he has endeavoured to fet forth, with much zeal and erudition.
'That Napier had begun, about the year 1593, that train of enquiry, which led him to his creat atchievement in Arithmetic, appears from a letter to Crugerus from Kepler, in the year 1624; wherein, mentioning the Canon Mirificus, he writes thus, Nibil autem Jupra Neperianame rationem effe puto: cifi Scotus quidam literis ad Tycloonem, ammo 1594, Scriptis jam $\int p$ em fecit Canonis illius mimifici, which allufion agrees with the idle fory mentioned by Wood in his Athenæ Oxon, and explains it in a way perfectly confonant to the rights of Napier as the inventor; concerning which, I fhall take occafion to comment, in the account of his works: nor is it to be funpofed, that had this noble difcovery been properly applied to fcicnce, by Juftus Byrgius, or Longomontanus, Napier would have been univerfally acknowledged by his contemporaries, as the undifputed Author of it.

No men in the world, are fo jealous of each other as the learned, and the leaft plaufible pretence of this fort, could not have failed to produce

* This edition was publifhed on the firft day of that year, in the end of which the Synod of Gap did declare, or moved to declare, the Pope to be Antichrift, which had never been bcfore attempted, by any body of Proteftants. Sce Sully's Memoirs.
With refpect to Napier's fanciful calculation of the completion of the prophecies, concerning the duration of the world, the year, in which this monument is erceted to his memory, immediately fucceeds that fixed for the end of the world, and no doubt muft be the year of judgment, with refpcet to the authenticity of his difcovery, and the merit of thofe arguments, which are brought forward to fupport his claim.
a controverfy, in the republic of letters, both in his lifetims, and after his icath, wheas his praifes were founded all over Europe *.

WHEN

- To quote authoritics in this place, would le to give a catalogue of ail the Miathenatical and Arithmetical bouks of that agc.

Ilis mott outrageous panegyrif, is Sir Thomas Urquhart, of Cromarty, who has given us alfo fo ridiculous aal account of the admiable Crichton.

Is his Jewel, Urquhart, after lhaving referred his readers to his Trigonometrical Work, entited Triffotetras, for the pra:les of Napier, thus mentions "an almoft incomprehenfible device, which be"ing in the mouths of the inof of Scotland, and yet unknown to any that ever was in the worid bit " himfelf, deferveth very well to be taken notice of in this place; and it is this: he had the fiell, as " is commonly reported, to frame an engine, (for invention not nuth unlike that of Archyteas's Dove) "which by virtue of fome fecret fprings, inward reforts, with other implements, and materials fit for "the purpofe, inclofed within the bowels thereof, had the power (if proportionable in bulk to the "action requircd of it (for he could have made it of all fizes) to clear a field of four miles circum"ference, of all the living creatures exceeding a foot in heighth, that flould be found thercon, how "near focver they might be found to one another; by which means he made it appear, that he was " able, with the help of this machine alone, to kill thirty thoufand Turks, without the hazard of one "Chriftian!" Of this it is faid that (on a wager) he gave proof upon a large plain in Scotland, to the deffruction of a great many head of Catte, and flocks of fheep, whercof fome were diftant from other half a mile on all fides, and fome a whole mile. To continue the thread of my fory, as I have it, I muft not forget, that when he was moft carnefly defired by an old acquaintance, and profeffed friend of his, even ahout the time of his contracting the difeafe whereof he died, that he would be pleafed, for the honour of hisfamily, and his own everlafting memory to pofterity, to reveal unto him the manner of the contrivance of fo ingenious a myftery, fubjoining thereto, for the better perfuading him, that it were a thoufand pitics, that fo excellent an Invention fhould be buried with him in the grave, and that after his deceafe nothing mould be known thereof: his anfwer was, that for the ruin and overthrow of man, there were 100 many devices already framed, which if lie could make to be fewer, he would with all his might endeavour to do; and that, therefore, feeing the malice and rancor rooted in the heart of mankind, will not fuffer them to diminifh the number of them, by, any new concert of his flould never be increafed. Divinely fpoken truly.

Urquhart's Tracts, Edinburgh, 1774. 8vo. p. 5\%.

When Napiei had communicated to Mr Henry Briggs, Mathematical Profeffor in Greflam College, his wonderful Canon for the Logarithms, that learned lrofeffor fet himfelf to apply the rules in his Imitatio Nepeirca, which I hare already mentioned, and in a letter to Archbifhop UTher, in the year 1615 , he writes thus, "Napier, Lord of "Merchifton, hath fet my head and hands at work with his new and " admireabic Logarithms. I hope to fee him this fummer if it pleafe "God, for I never faw a book which pleafed me better, and made me " more wonder"*.

Ir may feem extraordinary to quote Lilly the aftrologer with refpect to fo great a man as Napier; yet as the paffage I propofe to tranferibe from Lilly's life, gives a picturefque view of the mecting betwixt Briggs and the Inventor of the Logarithms, at Merchifton near Edinburgh, I flall fet it down in the original words of that mountebank knave \dagger.
" I will acquaint you with one memorable fory, related unto me by John Marr, an excellent mathematician and geometrician, whom I conceive you icmember. He was fervant to king James the firft and Charles the firf. When Merchifton firf publifhed his Logarithms, Mr Briggs then reader of the Aftronomy Lectures at Grefham College in London, was fo furprifed with admiration of them, that he could have no quietnefs in himfelf, until he bad feen that noble perfon whofe only invention they were : He acquaints John Marr therewith, who went into Scotland before Mr Briggs, purpofely to be there when thefe two fo learned perfons flould meet ; Mr Briggs appoints a certain day when
*Uher's Leitcrs, p. $35 . \quad \dagger$ Lilly's Life, London, 172 1. Svo.
to meet at Edinburgh, but failing thereof, Merchifton was fearful he would not come. It happened one day as Jolin Marr and the Lord Napier were fpeaking of Mr Briggs; "Ah John, faịth Merchifton, Mr Briggs will not now come": at the very inftant one knocks at the gate; John Marr hafted down and it proved to be Mr Briggs to lis great contentment. He brings Mr Briggs up into My Lord's chamber, where almoft one quarter of an hour was fpent, each beholding other with admiration before one word was fpoken: at laft Mr Briggs began. "My "Lord I have undertaken this long journey purpofely to fee your per"fon, and to know by what engine of wit or ingenuity you came firft " to think of this moft excellent help unto Aftronomy, viz. the Loga"rithms; but My Lord, being by you found out, I wonder nobody "elfe found it out before, when now being known it appears fo cafy". He was nobly entertained by the Lord Napier, anci every fummer after that during the Laird's being alive, this venerable man Mr Briggs went purpofely to Scotland to vifit him."

There is a paffage in the life of Tycho Brahe by Gaffendi*, which may miflead an inattentive reader to fuppofe that Napicr's method had been explored by Herwart at Hoenburg, 'tis in Gaffendi's obfervations on a letter from Tycho to Herwart, of the laft day of Auguft 1599. Dixit Itervartus nibil morari fe folvendi cujufquem triangruli diffcultatem; folere fo cnim multiplicationum, ac divifionum vice additiones folum, fuberactiones 93 ufurpare (quod ut fieri poffet, docuit pofimodum fuo Logaritbiniorum Canone Neperus.) But Herwart here alludes to his work afterwards publifled E

- Tychonis Bralaxi Vita. Parifus 4 to, 1654 P. 191.
in the year 1610 , which folves triangles by Profthapharefls, a mode totally different from that of the Logarithms.

Keprer dedicated his Ephemerides to Napier, which were publifhed in the year 1617^{*}; and it appears from many pallages in his letter about this time, that he held Napier to be the greatelt man of his age, in the particular department to which he applied his abilities: and indeed if we confider, that Napier's difcorery was not, like thofe of Kepler or of Newton, connected with any analogies or coincidences, which might have led him to it, but the fruit of unaflifted reafon and fcience, we fhall be vindicated in placing him in one of the higheft niches in the Temple of Fame.

Kepler had made many unfucceisful attempts to difcover his canon for the periodic motions of the planets and hit upon it at laft, as he hinefelf candidly owns, on the 15 th of May, 1618 ; and Newton applied the palpable tendency of heavy bodies to the earth to the fyftem of the univerfe in general ; but Napier fought out his admirable rules, by a flow fcientific progrefs, arifing from the gradual revolution of truth.

The laft literary exertion of this cminent perfon, was the publication of his Rabdology and Promptuary, in the year 1617 , which he dedicated to the Chancellor Seton, and foon after died at Merchifton, on the $3^{\text {d }}$ of April, O. S. of the fame year, in the 68 th ycar of his age, and, as I fuppore, in the 23 d of his happy invention.

* Kepler's Ephemerides nove moturm cxlefium ab anno 1617.

In his fron, the portraits * I have feen reprefent him of a grave and fyet countenance, not uglike his cminent contemporary Monfieur. Pe Pcirefc.

Is his family he feems to have been uncommonly fortunate, for his eldeft fon became learned and eminent even in his father's lifetime, his third a pupil of his own in Mathematics, to whom he left the care of publifhing his Pofthumons works; and lofing none of his children by death, he loft all his daughters by honourable or refpectable marriages.

He was twice married. By his firt wife, Margaret, the daughter of Sir James Stirling of Kier, defcended of one of the oldeft and moft refpectable gentlemen's families in Scotland, he had an only child, Archibald, his fucceffor in his eftates, of whom I fhall hercafter give fome account. By his fecond marriage with Agnes, the daughter of Sir James Chifholm, of Crombie, he had five fons: John, Laird of Eafter Tonie; Robert \dagger, who publifhed his father's works, whom I have already mentioned, the anceftor of the Napiers of Kilkroigh in Stirling flire; Alexander Napier of Gillets, Efq; William Napier of Ardmore; and Adam, of whom the Napiers of Blackfone and Craigannet in Stirling faire are defcended. His daughters were, Nargaret, the wife of Sir James Stuart of Roffayth ; Jane, marricd to James Hamilton, Laird of Kilbrachmont in Fife; Elizabeth, to William Cuninghame of Ceaigcinds; Agnes, to George Drummond of Baloch; and Helen, to The Reverend

[^2]Reverend Mr Mathew Bufbane, Rector of the Parifl O. Erfkine in Renfrew flire.

He was interred in the Cathedral Church of St Giles, at Edinburgh, on the eaft fide of its northern entrance, where there is now a Store Tablet, indicating, by a Latin Infcription, that the burial place of the Napiers, is in that place; but no Tomb has ever been erected to the memory of fo celebrated a man, nor can it be required to preferve his memory, fince the aftronomer, geographer, navigator and political arithmetician, muft feel themfelves every day indebted to his inventions, and thus a monument is erceted to the illuftrious Napier, which cannot be obliterated by time, or depretiated by the ingenuity of others in the fame department.

I proceed now to evince more fully the merit of Napier, by giving an account of the ftate in which he found Arithmetic, and of the benefit it received from his difcoveries.

```
S E C T I O N I.
    CONCERNING ARITHMETIC.
```

An eum Slatuas et Imagines, non animorum fimulacra fed corporun, fludiofe malti fummi bomines reliquerunt ; confiliorum relinquere, ac virsutum nofrarum effigion nonne mult) malle debentus, funmis ingeniis exprefums et politam?

```
Ciceronis Oratio pro Archia Poeta. Cap. xit.
```

Arithmetic is fo neceffary to man, that it muft lave made its appearance on the firft and rudeft ftage of fociety.

Signs to exprefs numbers were probably in ufe, as foon as figns to exprefs other idcas.

The figns the molt obvious, and we may venture to fay the firt in ufe, were the fingers. The number of thefe accounts for the general adoption of numeration by tens. The firft ten numbers have the appellation of digits or fingers, in moft of the languages.

The next improvement of Arithmetic, feems to have been the ufe of fmall pebbles, or of knotted ftrings. The words zuldoroy and culculus
fignify both a pebble and an arithmetical operation. The Ruffians, to this day, perform their calculations by means of ftringed beads, with great cxactuefis and expedition. The Greeks and Romans reprefented numbers by the letters of the Alphabet varioully combined. By means of their notation, the operations of addition and fubtraction of integers at leaft, were eafily enough perfomed. But multiplication, divifion, and the extraction of roots, were difficult and tedious operations. They muft have effected them, in a great meafure, by dint of thought. Boethius, who flourifhed towards the end of the fourth century, fays incleed, that fome of the Pythagoreans had invented, and ufed in their calculations, nine apices or characters, refenbling thofe we now employ; by which thefe latter operations muft have been much fimplified. Thefe figures were known only to a ferw myfterious men, and it is by no means probable that they were the inventors of them. It is probable that Pythagoras, or fome of his difciples, borrowed them, as they did many other inventions, from the Indians. The merit of the Greek philofophers, of which liuclid claims a diftinguifhed thare, confifted in raifing Arithmetic, from being a fimple art, to the rank of the fciences.

Gerbert of Aquitaine, in France, afterwards Pope Sylvefter the fecond, having imbibed the elements of the fciences, found that the chrifian world, at that time involved in darknefs, could not furnifh him witl fufficient helps for making any great progrefs in them. This induced him to fly from the Convent of Fleury, where he had lived from his infancy, to Spain; where, under the tuition of the Moors, he became fo intimately acquainted with the mathematics, that he is faid to have foon furpaffed his mafters. Upon his return to his native coun-
try, about the year 960 , or 970 , he introduced the ten characters, which form the bafis of our modern Arithmetic. There had been familiar to the Arabs, time out of mind, and the invention of them is, by their writers, afcribed to the Indians*.

About five hundred years afterwards, our Arithmetic received a moft important improvement, by the invention of decimal fractions.

As the invention of thefe fractions, and of the Logarithms, with other arithmetical improvements, was occafioned by the efforts of ingenious men, to perfect Trigonometry, it will be proper to give fome account of the rife and progrefs of this moft uffful branch of the mathematics.

Trigonometry, confidered as a fimple art, muft have begun with the divifion of lands in every country; but confidered as a fcience, or as the application of Arithmetic to Geometry, it feems to have had its rife amonry the hands of the great Hipparchus, about one hundred and forty years before the chriftian xra. Hipparchus was the firft who made ufe of the longitudes and latitudes, for determining the pofition of places, on the furface of the earth. Theon cites a treatife of his, in twelve books, on the chorls of circular ares, which muft have been a treatife on Trigonometry, and is the firft of which hiftory gives any account. Menelaus, about the end of the firf century, wrote a treatife, in fix books, on the chords; and there are extant of his three books on Spherical Trigonometry, where that fubject is treated in a manner ve-ry profound and extenfive.

[^3]THE diflicultics to be encountered in the folution of triangles, which is the object of Trigonometry, regard the tables of the parts of the circle, the form of the problems to be ufed, and the application of thefe problems to practice.

The Ancients, before Ptolemy's time, do not feem to have agrecd upon a particular divifion of the radius of the circle *. That indefatigable Aftronomer, who flourithed about the year 200 , having fimplified the theory of Menelaus, divided the radius into fixty equal parts, and computed on this foundation, the length of all the chords in the femicircle, correfponding to every thirty minutes. This fexagenary divifion, which continued in ufe for many centuries, obliged geometers to make ufe of numbers compofed of integers and fractions, which occafioned much labour and much lofs of time. The table of chords led them to problems wery complicated and of difficult execution. Every oblique triangle was to be divided into two rectangular ones; and in order to come at a folution, it was neceffary to raife to the fquare, and to extract the fquare root of many fractional numbers.

Tue Arabs, fometime in the eleventh century, greatly fimplified the chicory of Trigonometry, by fubftituting, for the chords of the double arcs, the halves of thefe chords. Thefe lines have been called finus, probably from S. Ins, an abbreviation of the Latin words femifes inferiptarum \dagger. This improvement paved the way to more fimple theorems, of which we flall have occafion afterwards to fpeak.

[^4]About the middle of the fifteenth century, George, furnamed Peurbach, from a village on the confines of Auftria and Bavaria, where he was born, either adopted the finus from the Arabs, or invented them himfelf. He alfo banifhed from Trigonometry the ufe of the fexagenary calculus, by fuppofing the radius to confint of 600000 equal parts, and computing on this foundation the length of the fines correfponding to every ten minutes of the Quadrant.

Joun Muller (commonly known by the name of Regiomontanus from the place of his birth, Konigfberg a town in Franconia) the difciple of Peurbach, improved his mafter's idea by making the radius equal to unity or 1,0000000 . On this new plan he calculated, with great labour and accuracy, a table of the fines for all the minutes of the Quadrant. He alfo was the firft who introduced the ufe of the tangents in Trigonometry ; of which Erafmus Reinoldus of Salfeldt firft constructed a table. To thefe tables Rheticus* afterwards added that of the feeants, which had been invented by l. Maurolyeus of Meflina.

By means of thefe new tables the art of Trigonometry was not only fendered more accurate than formerly, but one multiplication or divifion was fuperfeded in every geometrical proportion where the radius made one of the terms. The multiplication or divifon, however, of fuch large numbers required much expence of time, labour and attention.

[^5]Thirmares Ctrfus, towards the end of the fixteenth century, having ciehor learnel fiom his preceptor Juftus lyygius, or difoovered fome new properties of the fines, fliewed, in his Fundamentum Affronomicum publithed in the year 1588 , how thefe might be employed to great adrantage in the folution of fome trigonometrical queftions. 13y his method, which lie calls Proflbaploarcfis, from teóodzor addilio and úquigerio ablutio, the fourth term of a geometrical propofition, having for its firft term the radius equal to unity, may be found by adlition and fubtraction only; inftead, for example, of multiplying the fine a by the finc of b in the geometrical proportion 1 : fin. $a::$ fin. $b:$ fin. c, the fine of c may be had, with much lefs trouble, by fubtracting half the cofine of the fum of a and b from half the cofine of their difference; becaufe, as is cafily demonftrated, fin. $a \times$ fin. $b=\frac{\mathrm{r}}{2} \operatorname{cofin}(a-b)-\frac{1}{2} \operatorname{cofin}(a+b)$.

It was only to a few cafes, however, that the profthapherefis of Raymar could be applied, and the improvements made upon it, by Clavius* Magini \dagger and others, required fo many precautions that they: were not of very great fervice. \ddagger But inconfiderable as thefe abbreviations of calculus were, they were generally ufed by the moft eminent mathematicians and aftronomers at the end of the fixteenth and beginning of the feventeenth century §.

Sucir

[^6]Sucil was the fate of arithmetical computation, at the time of the inrention of the Logarithms, which, as Napicr himfelf fays, Omuem illans prifince matbefcos difficuliatem penitas e medio tollit ; et ad fublevandam meniorive inbecillitatem ita fe accomodut, ut illius adminiculo facile fit, plures quafliontes matbematicas unius borce Spatio, quam prifinizia et communiter reccpta forma finum, tangentiun et fecantium, vel integro die abfolvere*. But before we proceed to this moft important difcovery, we fhall give an account of thofe ingenious contrivances, intended to anfwer the fame purpofe, which previoully occurred to Napier.

$$
\begin{array}{lllllllll}
\mathrm{S} & \mathrm{E} & \mathrm{C} & \mathrm{~T} & \mathrm{I} & \mathrm{O} & \mathrm{~N} & \mathrm{II} .
\end{array}
$$

> NAPIER'S BONES.

THE firft of thefe mechanical devices is what our author calls Rabdologia, or the art of computing by figured rods. Thefe rods are fquare parallelepipeds three inches in length, and three tenths in breadth. Each of the faces of thefe parallelepipeds is divided into ten equal parts, of which nine are fquares and in the middle, and half of the tenth at one extremity or the top, and half at the other extremity or the bottom. Every one of thefe fquares is cut by a diagonal from left to right upwards. At the top of each face is fome one of the ten digits $0,1,2,3, \mathcal{B}_{c}$.

[^7]In the firft fquare below that digit is repeated, in the fecond is its double, in the third it's triple, and fo on. Of thefe multiples of the digit, the figure of units is below, and the figure of tens above the diagonal. The meaning of what has been juft faid will be evident by a little attention to Fig. I. where the four faces of each rod of the fet, recommended by Napier, are unfolded. By means of thefe rods the operations of multiplication and divifion are performed by addition and fubtraction.

Tire rule for multiplication is-Bring the rods to form the multiplicand at the top of their upper face. Join a rod, having unity at the top of its upper face, to the right or left land fide; in which feek the right hand figure of the multiplicator, and write out the numbers correfponding thereto in the fquare of thre other faces, by adding the fereral numbers occurring in the fame rhomboid. Scek the fecond figure of the multiplicator and proceed in the fame manner: arrange and add the numbers wrote out, as in common multiplication; the fum is the product required. To multiply 1785 by 364 , for example, I difpofe the proper rods as in Fig. II. ; next to 4 (the firt right hand figure of the multiplicator) I find 0 ; in the contiguous rhomboid 2 and 2 , which added together make 4 ; in the next 3 and 8 which make 1 and a furplus of ten; and in the laft 2 and 4 which, together with unity for the ten I had in the former rhomboid, make 7 . Thefe numbers 0,4, r, 7 , I fet down one after the other as I find them, proceeding from right to left. I go on in the fame manner with 6 and 3 (the other figures of the muitiplicator) ; and, after arranging and adding the partial products I find the total product required. Thus,

INVENTIONS OE NAPIER.

$$
\begin{aligned}
& \frac{364}{7140} \\
& 10710 \\
& \frac{5355}{649740}
\end{aligned}
$$

The rule for divifion. Bring the rods to form the divifor at the top of their upper face. Join a rod having unity at the top of its upper face, to the right or left hand fide. Defcend under the divifor till you meet thofe figures of the dividend wherein it is firft required how often the divifor is found, or the next lefs number, which fubtract from the firt figures of the dividend, and put for the firft figure of the quotient the correfponding number on the fide face. Bring down, one after the other, the remaining figures of your djvidend as in common divifion, and proceed in the fame manner till you have finifhed the operation. Let it, for example, be required to divide $6+9740$ by 364 . I difpofe the rods as in Fig. III. The next lefs number under the divifor 364 to 649 (the firft figures of the dividend) I find to be 364 itfelf which I fubtract from 649 putting I , the number correfponding on the fide face, for the firft figure of my quotient: to my remainder 285 I bring down 7 the next figure of my dividend. The next lefs number to 2857 under the divifor I find to be 2548 , which I fubtract from 2857 , putting 7 , the number correfponding in the fide face, for the fecond figure of the quotient. I go on in the fame manner till I have brought down the other figures of the dividend and completed my guotient as follows.

Althougir the extraction of the fquare and cube roots may be pretty expeditioufly performed by the rods, Napier propofes an auxiliary lamella for the abridgement of it. It would ferve little purpofe to give a particular defcription of the lamella, or an account of the manner of ufing it. Its length and thicknefs are the fame with thofe of the rods, and its breadth quadruple. Its two faces are divided and marked as in Fig. IV. To find out the way of operating by it will be no difficulty to any body who is a little acquainted with arithmetic and has time to fpare,

Another of Napier's contrivances is his multiplicationis promptucrium.

This machine confifts of a box of figured lamellæ. The lamellx, two hundred in number, are each eleven inches in length and one inch in breadth. Each of thefe lamellx is divided into eleven equal parts of which ten in the middle are fquares, and two thirds of the eleventh at
one extremity, and one third at the other. Every one of thefe fquares is divided into nine lefs fquares, one hundred of the lamellx are each one fourth of an inch in thicknefs, and the other hundred one eighth. Suppofe the former, which we fhall call direct lamellx, placed fo that the greater margin may appear at top and the lefs at bottom; and the latter which we fhall call tranfverfe, placed laterally, with the greater margin to the right and the lefs to the left hand. In this pofition cvery fquare appears cut by a diagonal (faint in the fimall but ftrong in the great ones) from the left to right upwards. Each of every ten both of the direct and of the tranfverfe lamellx has fome one of the ten digits $0,1,2,3, \xi^{c}$. inferibed on its greater margin. The multiples of the digit on the margin of a direct lamella are difpofed in each of its greater fquares as pointed out by Fig. V. where a reprefents the digit itfelf, b the right hand figure, and b^{\prime} the left hand figure of its double; c and c^{\prime} the right and left hand figures of its triple (the plain letters being above and the accented ones below the diagonal of the figure); d and d^{\prime} thofe of its quadruple, and fo on. In the tranfverfe lamella thofe which have o on the margin are untouched; thofe which have unity on the margin have the loculus correfponding to a cut out; thofe which have two on the margin have the loculi of σ and σ^{\prime} cut out; thofe which have 3 the loculi of c and c^{\prime}; thofe which have 4 the loculi of d and $d^{\prime}, \xi c$. This will be fufficiently evident by infpecting Fig. VI. where it is examplified in a direct lamella titled with the digit 4, and in a tranfverfe one with 7 . The box fitted to reccive thefe lamellx is of a cubical form; fomething more than eleven inches wide and nearly eight inches high; fee Fig. VII. Two of its contiguous fides, which we fhall diftinguifh by the names of left and right, are
divided into twenty parts, each equal in length to the breadth of ten lamellix, and in height to the thicknefs of a direct and of a tranfucrfe lamella alternately. The greater divifions on the left fide are cut out, and the lefs on the right fide. Into the box through cach of the former, with their titled ends foremoft, ten direct lamellx of the fame title are inferted with their untitled ends foremoft, and an cqual numlocr of the tranfverfe ones of the fame title, through each of the latter. Thofe titled o are in the uppermoft divifions, and thofe titled $1,2,3$, Es. in the refpective divifions below.

MAultiplicaticn by the promptuary is perfermed as follores. Tue firft, or right hand, fecond, third, \&c. figure of the multiplicand is exhibited by the title of a lamella taken from the firft, or right hand, fecond, third, \&c. column of the left fide of the box and placed on its lid exactly above and as it lay in that column. The empty fyace, if any, torvards the left is to be covered with blank lamellæ. The firft, or right hand, fecond, third, \&c. figure of the multiplicator is exhibited by the title of a lamella taken from the firft, or left hand, fecond, third, \&c. column of the right fide of the box and placed on the formacr lamella exactly above, and as it lay in that column. The remaining fpaces, if any, towards the right are to be covered with blank lamellæ. All the ufeful multiples on the direct lamellx appcar through the feriefellar, and all the ufelefs multiples are hid. All the numbers begimning at the corner next the firt or right hand figures of the multiplicand and multiplicator, lying between the united ftrong diagonals, are to be added feverally; the right hand figures of the fums, marked down; and 1 for every 10 , carried to the next place, till we come to the oppo-
fite corner: and the work is done. This operation, we truft, is defcribed with fufficient accuracy and plainnefs to fuperfede the neceflity of an example. In order that divifion may be performed by the Promptuary, it muft firt be converted into multiplication by means of tables dreffed on purpofe, or of tables of the fines, tangents and fecants, conftructed on the hypothefis of the radius being equal to unity, followed by a certain number of Zeros. That this may be accomplifhed by thefe laft, look for the co-fecant, or co-tangent of the arc which lias the divifor for its fine or tangent. Make the co-fecant or co-tangent found the multiplicand, and the dividend the multiplicator; or converfely. Find the product by the promptuary as above directed. This product, a number of the right hand figures according to the number of zeros in the fquare of the radius being marked off as decimals, is the quotient required. The reafon of this is obvious: the co-fecants or co-tangents being third proportionals to the fines or tangents and the radius or unity; to multiply any number by one of the two firft, or to divide it by the correfponding one of the two fecond of thefe lines, is one and the fane thing.

LOCAL ARITHMETIC.

LOCAL Arithmetic, another ingenious invention of Napier, is the art of calculating by means of counters properly placed on a chefs board, or fimilar table. Two contiguous margins (which we fhall diftinguifh by the names of left or inferior, and right or lateral) of that table, are divided into a number of parts equal to that of their adjoining fquares. The inferior divifions beginning at the right and the lateral at the left have fuccellively infribed in them the fuccelive terms of the geometrical progrefion $1,2,4,8,16,32$, $\mathcal{F i}$. which are called loca! numbers.

Common numbers are reduced to local by fubtraction, and local numbers to common by addition. The common number 1875 , for example, expreffed in local numbers will be found to be 1024; $512 ; 256$; $64 ; 16 ; 2$ and 1 : and vice verfa. The firt of thefe seductions is neceflary before, and the fecond after any of the operations of common arithmetic are performed by this contrivance. By the help of a very fimple table, reduction may be performed with eafe and cxpedition.

To Ald. Put a counter for each local number in the proper place on the lateral or on the inferior margin of jour table. For every two counters found in the fame place, put one in the next higher, after removing them. Repeat this till no place fhall contain more than one counter. The counters left indicate the numbers required. Thus let it be required to find the fum $1875 ; 258$, and 1099. I put the coun-
ters at $1024 ; 512 ; 256 ; 64 ; 16 ; 2$ and 1 , the local numbers of the firft ; at 256 , and 2 , thofe of the fecond; and at $1024 ; 6 \frac{4}{4}, 3,2$, and 1 , thofe of the third. At 1 . -I find two counters which I remove, and put a counter at 2 where I find other three, I take up thefe four and put two, in the next place 4 \&c. and proceeding in this manner I find at laft a counter at each of the following numbers $2048 ; 1024 ; 12 \%$, and 32 , which form $32 j_{2}$ the fum fought.

To cuitrati. Pus a counter for each local number of the gieater of the two quantitics, at its proper place, a little to one fide, on the inferior margin; and one for cach of the local numbers of the lefs of the two quantities, at its proper place, a little to the other ficle, on the fame. margin. Remove the counters found on oppofite fides of the fame place. Change the fide of the loweft counter remaining; take off that above it ; and put a counter in each place between them. Remove as before. Repeat this till there thall be no counters on one of the fides of the margin; and thofe on the other will indicate the remainder. Let it be propofed, for example, to fubtract 1099 from 1875 . I put counturs at $1024 ; 6_{4} ; 8 ; 2$ and 1 , to the left of the lateral margin, and at $102+$; $512 ; 256 ; 64 ; 16 ; 2$ and I, to the fiit of that margin. Finding a counter oin cach fide of the numbers $10: .4 ; 64 ; 2$, and 1 , I remove them. My loweft counter is to the left of 8 . I put it to the right and take up IG. above it; as there are no intermediate places, and as the remaining counters are on the fime fide of the margin my operation is finifhed. The remainder is $512 ; 256$, and 8 ; or 776 .

Multiplication, Divifion, and the cxtraction of the fquare roor, may alfo be performed on the margin: but they are performed with much greater eafe and clearnels on two contiguous margins and the fquares of the table. On thefc laft the counters lave two different movements ; the one parallel to the fides like that of tine tour, and the other diagonal like that of the bilhop, on the chefs board. Livery fquare of the table is faid to have for its value one of the equal numbers (on the two margins) between which it lies diagonally. The two fides of a fquare formed by counters in the area of the table, parallel to the inferior and lateral margins, we flaall call a Gnomon: this gnomon confifing of $3,5,7, \& c$. counters is faid to be congruous when its value can be fubtracted from the numbers left marked upon the margin.

To Minlity. Mark with counters the local multiplicator in the inferior and the local multiplicator in the lateral margin. From the middle of the marked places let points be fuppofed to move perpendicularly into the table, and put a counter at each interfection. Remove the counters on the margins. Bring the counters in the fquares of the tables to their values in one of the margins; add, if neceffary, and the work is done. Suppofe, for example, 19 is to be multiplied by 13 . I mark with counters Fig. ViII, the numbers 1,2 , and 16 , on the infcrior and the numbers $\mathrm{I}, 4$, and 8 , on the lateral margin, having placed other counters rectangularly in the table, I remove the marginal ones. Thofe other counters I bring up, one by one, to their proper places in the lateral margin ; and, after adding, I find a counter at cach
of the following numbers, $128 ; 64 ; 32 ; 16 ; 4 ; 2$, an. 1 , which fo:m my product, 247.

To Divide. Mark with counters the local dividend in the late"al, and the local divifor in the inferior margin, beginning at the firuaie where a point, defiending diagonally from the angle aboue the highent number of the dividend, would interfect a point afcending perpendicularly from the higheft number of the divifor ; place a feries of connters parallel to the divifor: If this feries is equal or i.aferior in value to the higher number of the dividend fubtrat it from them; and if otherwife, bring it down one, two, \&c. fteps and fubtract. Repeat the operation till either nothing, or at leaft a numberlefs than the divifor, fhall remain on the lateral margin. Thefe feriefes point to the numbers that form the quotient. For example let it be required to divide 250 by 13. I mark, Fig. IX. the numbers $128 ; 67 ; 32 ; 16 ; 8$; and 2 , in the lateral, and $8 ; 4$, and $:$ in the inferior margin.

My firt ferics points to 16 . I fubtract it from the divilund and find remainiug $32 ; 8$, and 2 .

My next ferics pointing to 4 is too great to be fuberaded, for which reafon I bring it a fep farther down.

After fubtracting, there remains 16 . In the fame manner my third feries pointing to 2 I muft bring to point io 1 ; which fabtracted, there remains counters on the dividend at 2 and 1 . My quotient is therefore $16 ; 2$, and x or 19 ; and 2 and x, or 3 over.

To extrat the fiume roct. Napk the number locally in the lateral margin. From the angle formed by the mecting of the inferior line with the lateral, lut a point alcend diagonally till it arrive in a fquare of the fame value with the higheft number that can be fubtracted from the number whofe fquare root is fuught. In this fquare piace a connter, and fubtract its value from the nunber marked in the margin. Iorm the congruous gnomons, which from the forefaid fquare have each their upper comnter in a line perpendicular and their left hand inferior one in a line parallel to the lateral margin: and fubtract their value one by one from the marked remainders. The counters, lying perpendicularly to cither of the margins, point out the fquare roct. Let it be pronofed, for example, to find the fquare root of 2200 ; I mark the numbers $2048 ; 128,32$, and I on the lateral margin. Iig. X. Subtracting the value 1024 of the firft counter placed in the table as directed, the rea mainders are $1024,128,32$ and 1 . From thefe taking the value $5 \mathbf{1 2}$ and 64 of the firft congruous ghomon, there remain $512,64,32$ and I . From thefe taking the value of the fecond congruous gnomon 256 , 64 and 16 , there remain $64,16,8,4$ and 1 : and from thefe taking the value of the fourth congruous gnomon, $64,16,8,4$ and 1 , there remains nothing. The fquare root, as indicated by the dircction of the counters in the table, is $32,8,4,2$ and 1 , or 47 .

What is above faid will, it is hoped, be fufficient to give a clear idea of the form and ufe of thofe of Napier's arithmetical inftruments, which feemed to him worthy of being communicated to the public. The reafons on which the different operations are founded, depending upon the conftruction of the machines and the obvious properties of numbers,
bers, muft occur to cvery realer endorred with a molerate fhare of attention. The hint of the rods, or virgule numeratrices and of the promptuary which is only an improvenient of the rods, feems to have been taken from the Abacus Py!tageroricus or common multiplication table. Napier's acquaintance with chefs, the moft ingenious of all games, and at which mathematicians are commonly the beft players, occafioned his difcovery of the Aritbmutica localis. The Promptuary, at leaft for multiplication, is greatly preferable to the rods and the chefs board; for the partial products of two numbers, confinting of even ten Figures cach, may, by a little practice, be exhibited on that machine in the fpace of a minute, and no numbers require to be written out, excepting the total product. Had the logarithms remained undifcovered, the promptuary, in all probability, would have become univerfally familiar to thofe who were engaged in tedious calculations. But to thofe who are acquainted with the logarithms, Napier's arithmetical machines and thofe afterwards invented, a few of which we fhall enumerate, although the monuments of genius, muf, in general, be regarded as mathematical curiofities of no ufe.

Periaps put into the hands of young poople learning arithmetic, they might make them fond of that fuady.

Shickartus in a letter to Kepler, written in the year 1623 , informs him that he had lately conftruCled a machine confiifting of eleven entire and fix mutilased little whecls, by which he performed the four arithmetical operations *, Pafcal, in the year 1642, at the age of ninc.

[^8]teen, invented a machinc with which all kinds of computations may be made without the pen, without counters, and without the knowledge of any rule of arithmetic. I have not been able to meet with any defription of it. It muf however have been of a very complicated nature as its autbor was two years in bringing it to perfection, owing to the difficulty he found to make the workmen underfand him thosoughly *. The French writers agree in calling it admirable; \dagger but the xame of Pafcal perhaps does it more honour than it deferves. This machine is preferved in the cabinet of the king of France and in thofe of a few others \ddagger.

The Marquis of Worcelter, a man of genius but a plagiary, mentions in his fcantlings of inventions, publifhed in the year 1655 , an infrument whereby perfons ignorant in arithmetic may perfectly obferve numerations and fubtractions of all fums and fracticiss §. Whether he here refers to fome of Napier's inftruments, to Gunter's feale, of which I hall afterwardis fpeak, or to fome invention of his own is uncertain.

About the ycar $1670,{ }^{* *}$ Sir Samuel Moreland contrived two arithmetical inftruments; one for addition and fubtraction, and the other for multiplicaton, divifion, and the extraction of the fquare, cube, and fquare cube roots, the defcription of which he publifhed at London, anno 167 ft .

* Les hommes inlifres par Permalt.vie de Pafeal. + Bayle Chausfepic, Bailict, Perrault, \&e. \ddagger Pref. Penfees de Pafeal. $\| \mathrm{N}^{0} 84$. Glag. Edit. 1767.
** Moreland's Inftrument of excellent ufe as wcll at fea as at land, jovented and variounly cxpeiq-
mented in the year a 670 , Lond. 1671 . Fol.
t| See alfo Pbil. Tranfact. No 94. P. 6048.

Mocir abcut the fame time, Mr George Brown, afterwards Miniter of Kilmaures in Scotland, invented a machine which, in his account of it pullifhed at Edinburgh in the year 1700, he calls the Rotula Arithmetica. This machinc confilts of a box containing a circular plane moveable on a center pin and fixed rince, whofe circles are defcribed from the fame center. The outermoft circular band of the moveable, and the innermoft of the fixed, are cach divided into a hundred equal parts, and thefe parts are numbered $0,1,2,3$, \&ic. Upon the ring there is a fimall circle having its circumference divided into ten equal parts, furnifhed with a needle which hifts one part at every revolution of the moveable. By this fimple inftrument are performed the four arithmetical uperations not only of integers but even of decimals finite and infinite *。

Some time before Mr Bromn's little book appeared, ill Glover had publilhed a Roue Arithmerfue fimilar to the Notula but not fo purfech. It would appear however that that genticman had got fome hints of the confruction of the Rotula from a brother of his own who had been one of Brown's pupils in 1674 .

In the year 1725, an inftrument invented by M. de l'Epine of a more fimple conftruction and eafirr in its operations than Pafcal's; in 1730 , another by Mr Boifenderu, by which calculation is performed without writing; and in 1738 a third by Mir Ratalin, confifting of rols different from thofe of Napier, were approved of by the Trench acadcmy 7 .

$$
\mathrm{L} \quad \text { SAM }
$$

[^9]Sam Reyer invented, at what time I have not been able to learn, a kind of feangenal rods in imitation of Napier's, by which fexagenary arithmetic is eafily performed *.

I have an aritlmetical machine which came into my poffeffion from my uncle George Lewis Erfkine who, though born deaf, by the affiftance of the learned Henry Baker of the Royal Society at London, acquired not only the ufe of fpecch and the learned languages but a deep acquaintance with ufeful literature. This machine confifts of a fmall fquare box furnifhed with fix cylinders moveable round their axes. $\mathrm{U}_{\text {pon }}$ each of thefe cylinders, which are only Napier's rods, are engraventhe ten digits, and their multiples. From a perpetual almanac on the out fide of the box, it would appear that this machine was conflucted. in the year 1679.

S E C T I O N II.

FAPIER'S THEORY OF THE LOGARITHMS*: NEWTON'S IDEAS OE FLUXIONS, BORROWED FROM NAPIER.

I Shall now proceed to unfold the Logarithms, the difcovery of which has jurtly entitled Napier to the name of the greatef Matbermaticiaas of bis Country. Let two points, the one in N, and the other in L, (Fig. XI.) having at firft a fimilar velocity, move along the indefinite fraight lines CND and $\mathrm{KL} \triangle$; the firft increafing its velocity or diminifhing it according to its diftance from a fixed point C , and the fecond preferving its velocity without augmentation or diminution. Let the former, in a certain time, arrive at any point N^{\prime} or n^{\prime}, and the latter in the fame time at the point L^{\prime} or l^{\prime} : the fpace $\mathrm{L} \mathrm{L}^{\prime}$ or $\mathrm{Ll} \mathrm{l}^{\prime}$ deferibed by the fecond moveable point is faid to be the Logarithm of the diftance CN^{\prime} or Cin^{\prime} of the firft from the fixed point C .
r. The Logarithm of CN or unity is zero: for the firf moveable point not having left N , the fecond has had no time to defieribe any fyace.
2.

[^10]2. Tine Logarithms of the terms of a geometrical ferics are in arithmetical progrefion: for let $\mathrm{N}^{\prime} \mathrm{N}^{\prime}, \mathrm{N}^{\prime} \mathrm{N}^{\prime \prime}, \mathrm{N}^{\prime \prime} \mathrm{N}^{\prime \prime \prime}$, \&c. or $\mathrm{N}_{\mathrm{n}} \mathrm{n}^{\prime}, \mathrm{n}^{\prime} \mathrm{n}^{\prime \prime}$, $n^{\prime \prime} n^{\prime \prime \prime}$, \&ec. be continual proportionals, they will be deferibed by the firt moveable in equal times, and the equal fpaces LI', L'L" L"L'", \&ic. or $\mathrm{L} \mathrm{l}^{\prime}, \mathrm{l}^{\prime \prime} \mathrm{l}^{\prime \prime} \mathrm{l}^{\prime \prime} \mathrm{l}^{\prime \prime \prime}$, \&c. will be deferibed by the fecond moveable in the fame times. Now it is eafily demonfrated that $\mathrm{CN}, \mathrm{CN}^{\prime}, \mathrm{CN}^{\prime \prime}$, \&cc. or $\mathrm{Cn}, \mathrm{Cnn}^{\prime} \mathrm{Cn}^{\prime \prime}$, \&cc. are in cometrical progreffion, and it is evident that their refpective logarithms $\mathrm{o}, \mathrm{L} \mathrm{L}, \mathrm{LI} \mathrm{L}^{\prime \prime}, \& \mathrm{c}$. or $\mathrm{o}, \mathrm{L}, \mathrm{L}^{\prime}$, $2 L L^{\prime}$ \&ic. and $o, i l^{\prime}, L l^{\prime \prime}, \& c$. or $0, L l^{\prime}, 2 L l^{\prime}, \& c$. are in arithmetical progreffion.
3. The logarithms of quantities lefs than CN are negative, if thofe of quantities greater than CN are pofitive; and converfely: for if $\mathrm{Cn} \mathrm{n}^{\prime \prime}$ $\mathrm{Cn}^{\prime}, \mathrm{CNCN} \mathrm{N}^{\prime}, \mathrm{CN} N^{\prime \prime}$ are continual proportionals, in order that their logarithms $2 \mathrm{Ll}^{\prime}, \mathrm{L} \mathrm{l}^{\prime}, \mathrm{o}, \mathrm{LL} \mathrm{L}^{\prime}, 2 \mathrm{~L} \mathrm{~L}^{\prime}, \& \mathrm{c}$. may be in arithmetical progreffion it is neceffary that the terms on different fides of zero fhould have oppofite figns. Hence,
4. The logarithm of any quantity is the fame with that of its reciprocal, the fign excepted.
5. The number of fyftems of logarithms is infinite: for the ratio of $C N^{\prime}$ to $C N^{\prime}$ and $L L^{\prime}$ are indeterminate.
6. The logarithms of any one fyftem, are to the correfpondent oncs of aryy other, as the value of $L L^{\prime}$ in the finft fyftem, is to its value in the
the fecond. From the 2 d propofition the four following, expreffed in the language of arithmetic, are eafily deduced.
7. Tue logarithm of a product is equal to the fum of the logarithms of its factors. Thus the logarithm of $\mathrm{CN}^{\prime} \times \mathrm{CN}^{\prime \prime}$ is $\mathrm{LL}^{\prime}+\mathrm{LL}^{\prime \prime}=\mathrm{LL}^{\prime \prime \prime}$: for $\mathrm{CN} \times \mathrm{CN}^{\prime \prime}=\mathrm{CN}^{\prime \prime \prime \prime}$.
8. Tue logarithm of a quotient is equal to the difference of the logarithms of the divifor and dividend. Thus the logarithm of $\frac{\mathrm{CN}^{\prime \prime \prime}}{\mathrm{CN}^{\prime}}$ is $\mathrm{LI}^{\prime \prime \prime}-\mathrm{LL}^{\prime}=\mathrm{LI}_{1}^{\prime \prime}:$ for $\frac{\mathrm{CN}^{\prime \prime \prime}}{\mathrm{CN}^{\prime}}=\mathrm{CN}^{\prime \prime}$.
9. The logarithm of the power of a quantity is equal to the product of the logarithm of that quantity by the index of its power. Thus the logarithm of $\overline{\mathrm{CN}}^{\prime}$ is $3 \mathrm{LL}^{\prime}=\mathrm{LL}^{\prime \prime \prime}$: for. $\overline{\mathrm{CN}}^{3}=\mathrm{CN}^{\prime \prime \prime}$.
10. The logarithm of the root of a quantity is equal to the quotient of the logarithm of that quantity by the index of its root. Thus the logarithm of $\sqrt{\mathrm{CN}^{\prime \prime \prime}}$ is $\frac{\pi}{3} \mathrm{LL}^{\prime}$: for $\sqrt{\mathrm{CN}^{\prime \prime \prime}}=\mathrm{CN}^{\prime}$.

From the $7^{\text {th }}$ and 8 th propofitions the two following are evident.

1r. The logarithm of an extreme or mean term of a geometrical proportion, is equal to the difference of the fum of the logarithms of the means or extremes and the logarithm of the other cxtreme or mean.
12. If the logarithins of all the primary numbers are known, thof of all the compofite numbers may be found by fimple addition; and if all the lateer are known, all the former may be known by fimple fubtraction.

Fross the and or the gth and toth propofitions.
13. The logarithms may be thus defined, Numerorum proportionalium
 ports) Numeri rationent exponentes; becaufe they denote the rank, order, or diftance, with regard to unity, of every number in a feries of continued proportionals of an indefinite number of terms.
14. Tire logarithm Ll^{\prime} of any quantity Cn^{\prime} is greater than the difference Nn^{\prime} between CN or unity and that quantity, and lefs than that difference, increafed in the proportion of CN to the fiid quantity: for the velocity of the fecond moveable deferibing Ll^{\prime} being greater than that of the firft deferibing Nn^{\prime} during the fame time, Ll^{\prime} is greater than Nn^{\prime} or $\mathrm{CN}-\mathrm{C}^{\prime}$; and the velocity with which NN^{\prime} is deferibed, being greater than that with which Ll^{\prime} is deferibed, in an equal time, Ll^{\prime} is lefs than NN^{\prime} or $\mathrm{CN}^{\prime}-\mathrm{CN}$ or [fince $\left.\mathrm{Cn}^{\prime}: \mathrm{CN}:: \mathrm{CN}^{\prime}\right],\left[\mathrm{CN}-\mathrm{Cn}^{\prime}\right] \times$ $\frac{\mathrm{CN}}{\mathrm{Cn}^{\prime}}$ Hence,
15. If a quantity Cn ? differs infinitely little from CN or unity, its logarithm Ll^{\prime} will be equal to $\left[\mathrm{CN}+\mathrm{Cn}^{\prime}\right] \times\left[\frac{\left.\mathrm{CN}-\mathrm{Cn}^{\prime}\right]}{2 \mathrm{Cn}^{\prime}}\right.$ the arithmetical ${ }_{2}$
metical, or to $[\mathrm{CN}-\mathrm{Cn}] \times \sqrt{\frac{\mathrm{CN}}{\mathrm{Cn}^{\prime}}}$ the geometrical mean between its limits above ftated.
16. Tine difference $\mathrm{l}^{\prime \prime} \mathrm{l}^{\prime \prime}$ of the logarithms Ll^{\prime} and $\mathrm{L1}{ }^{\prime \prime}$ of any tro quantities Cn^{\prime} and $\mathrm{Cn}^{\prime \prime}$ is lefs than the difference $\mathrm{n}^{\prime} \mathrm{n}^{\prime \prime}$ of thefe quantities increafed in the proportion of the lefler $\mathrm{Cn}^{\prime \prime}$ to CN or unity; and greater than the faid difference increafed in the proportion of the greater Cn^{\prime} to CN or unity: for reafoning in the fame manner as in the Iath propofition $\mathrm{l}^{\prime \prime} 1^{\prime \prime}$ will be found to be lefs than NN^{\prime} or [fince $\mathrm{Cn}^{\prime \prime}$: CN : : $\left.n^{\prime} n^{\prime \prime}: N N^{\prime}\right] C N \times n^{\prime} n^{\prime \prime}$. Hence,
17. If the difference of two numbers Cn^{\prime} and $\mathrm{Cn}^{\prime \prime}$ is infinitely finall, the difference of their logarithms will be expreffed by the arithmetical $\left(\mathrm{Cn}^{\prime}+\mathrm{Cn}^{\prime \prime}\right) \times\left(\mathrm{Cn}^{\prime}-\mathrm{Cn}^{\prime \prime}\right) \times \mathrm{CN}$ or the geometrical mean $\mathrm{Cn}^{\prime}-\mathrm{Cn}^{\prime \prime}$ $2 \mathrm{Cn}^{\prime} \times \mathrm{Cn}^{\prime \prime}$
$\times \mathrm{CN}$ between its limits abore ftated. Beautiful, ingenious and profound! Such is the manner in which Napier conceived the generation of numbers and their logarithms, and fuch are fome of their relative properties which naturally flow from it. Thofe who are acquainted with Newton's manner of explaining the doctrine of fluxions, muft be ftruck at its refemblance to this of our Scotifh Geometer. This refemblance, or rather identity, is confpicuous not only in their ideas but in their very words. The explanation of the firft definition in the Canonis mirifici defirititio is in the following terms: Sit punctus A , a' quo diucendz fit linea fluxu alteriu's prunti, qui fit D. Fluat eroso primo momento B ab A
in C . Secundo momento à C in D . Tertio momento a D in E atque ita deinceps in infuitum defcribendo lineam $\mathrm{ACDEF}, \& \mathrm{c}$. Intervallis AC, CD, DE, EF et ceteris deinceps ceqialibus, et momentis aqualiuns defcriptis, \&c. I the appendix to the Canonis mirifici confructio, under the article Habitudiues Logaritbmorum, he thus expreffes the relation between two natural numbers and the velocities of the increments or decrements of their logarithms; Ut finus major ad minorem; ita velocitas incrementi aut decremesti apud majorem. What difference is there betwixt this language and: that of the great Newton now in ufe $x: y:=\overline{\log \cdot y}: \overline{\log .} x * ?$

The feeds of the invention of the logarithms were perceived by the ancients as well as by the moderns, upon the revival of fcience in Europe, before the time of Napier. In the elements of Euclid, and in the Arenarius of Archimedes \dagger, thefe great men feem to have been very well acquainted

* See Hutton's Confruction of Logarithms, p. 42 and 48.
+ [In the Arenarius of Archimedes] Without entering in this place, on the repulfion of the reccivid opinion, that this great Mathematician had made the firft flep towards the knowledge of the Lagarithms, I fhall content myfelf with giving the refult of the enquiry, by one of the abief Matho maticians in the country, to whom I addreffed myfclf, when I firft fet myfelf to produce this work, and who having fuccefffully ilufrated the difcoveries of the Prince of Englifh Mathematicians, gladJ came forward to contribute his fhare to the triumph of our Scotifl Newton.

Archimedes demonfrates a Theorem concerning numbers, made by the mutual multiplication of the terms of a geometrical progrefion; by means of which Theorem the principlcs of Logaritbmic computation may eafily be demonitrated. Archimedes, therefore, had he been furnifted with tables of Logarithms, would have known how to ufe them: But it appears not, that he was poffefed of any principles, which could lead him to the formation of Logarithms. IIc could avail hinafelf, indeed, of the indices of the powers of numbers, to abridge the lahour of multiplication, as we now avail aurflices of Logarithms for the like purpofe: Dut the guiph betiveen this method by the Natural Into
acquainted with the correfpondence of an arithmetical to a geometrica! progreffion*。

Michace Stifellius, a German Arithmetician, who fourifhed about: the middle of the fixteenth century, in his Aritbmetica integra fated the comparifon between the feries $\left\{\begin{array}{llll}1, & 2, & 4,8,16,32, \\ 0, & 1, & 2, & 3,\end{array} 4,5,\right\} \mathcal{F}_{c}$. obferving that the product or quotient of any two terms of the former corrciponded to the fum, or difference, of the equidiftant terms of the latter:

$$
\mathrm{N}
$$

Whetiler
fices, and the method of Logarillms, is wider than it may at funt feem. Anv Number, not iffele arifing from a root, is the root of a diftint progrefion of Powers. IHence there are as inany dilinct progrefions as there are numbers not actually powers: And in all thefe procreffions tie hom, iogous powers have the fame exponents or indices. Thus 3 is the exponent of the nermer S in i^{\prime}.e fures of the powers of 2. But 3 is cqually the exponept of 27 in the feries of the powers of 3 ; of 125 in the ferics of the powers of 5 ; of 343 in the feries of the powers of 7 : and univet f.lly of all chivic numbers; fo + is the exponent of all biqualratic numbers ; 5 of ail cquadrato-cubic; and 〔o on. A number therefore is not fufficiently characterifid by its cxponent unlcfis it be known to what feries of poive:s it belongs, that is from what root it arife. Add to this that many numberis fall into r.o natural feries of powers. This methorl thercfore of computing by the naturai indices of powers arining frora the natural numbers \therefore as roots, will onisy ferve the purpofe of rude calculations learting to fome very enneral conclufions and mult fill in all infances in which aceuracy is required. Arcl invil. naver thou hit
 general feries of ration, which notion is the true hafis of Napier"s great invention, as witl be more f:-
 of proportional, in which all numbers flou'd be comprifed, in which cyerv nen ber of confen!e ee: had its own particular exponent, and to find the exponent of any given numbe , a the number of any given exp, nent in thit univerfial feris."

In the courfe of this work, it will be fufficieniy proved, that Napier wias as mach the fir? to corre ecire as to cxecute this wonderfuil project.

- Th ofe wh, wifh to reculleif low much we are indebted to the anc:ents, in this as wetl as in mony cther departmenes of feioncer, will read with fikafure Mr Duten's Inquiry into the or f no of the dif eoverice attributed to the moderns,

Whether Napier ever faty or heard of this remark of Stifeilius is not knorvn, nor indeed is it of any confequence; for it cannot fail of prefenting itfelf to any perfon of molerate acntenefs who happens to be engaged in arithmetical queftions of this nature where the powers of numbers are concerned. It is not therefore this barren thongh fundanental remark that can entitle him who firf mentioned it to the name of the inventor of the logarithms. The fuperior merit of Napier confifts in having imagined and affigned a logarithm to any number whatever, by fuppofing that logarithm to be one of the terms of an infinite arithmetical progrefion, and that number one of the terms of an infinite geometrical progrefion whofe confecutive terms differ infinitely little from each other.

The invention of the logarithms has been attributed to Chriftianus Longomontanus, one of Tycho Brabe's difciples, and an eminent aftronomer and mathematician in Denmark. The hackneyed Nory which gave rife to this, is told by Anthony Wood in his Atkence Ononienfes*, and is as follows; "One Doctor Craig, a Scotchman, coming out of "Denmark into his own country, ca led upon John Ňeper baron of Mer"chifton near Edinburgl, and told him among other things of a new " invention in Denmark (by Longomontanus as 'tis faid) to fave the "tedious multiplication and divifion in aftronomical calculations. Ne" per being follicitous to know farther of him concerning this matter, " he could give no other account of it than that it was by proportional " numbers. Which hint Neper taking, he defired him at his return to * call again upon him, Craig after fome weeks had paffed did fo, and

$$
{ }^{6!} \text { Neper }
$$

*Vol. I. p. 469 .
"Neper then thewed him a rude draught of what he called Canon Mi"rabilis Logarithmorum: which draught with fome alterations he prin"ting in 16If, it came forthwith into the hands of our author Briggs " and into thofe of Will. Oughtred, from whom the relation of this " materer came."

THis flory is either entirely a fidion, or much mifeprefented. There is no mention of it in Oughtred's writings *. There are no traces of the logarithms in the works of Longomontaness \dagger, who was a vain man and furvived Napier twenty nine years \ddagger, without ever claiming any right to the invention of thofe numbers, which had for many yeara been univerfally ufed over Europe.

The foilowing hypothefis may perhaps obviate the fory of Anthe. ny Wood. Might not Craig, whom reafon and TJ cho Brahe could not divelt of the prejedices of the Arifotchan philofophy which he had imbibed, on retuming to Edinburgh from Denmark, rifit Napier and tell him amone other literary news that Longomontanus had invented a method of avoiling tice telious operations of multiplication and divifron in the folution of thangles? Afer getting the beft anfwers this dudur coald give to Napier's queries relative to this method, I perceive, fays the baron of Nerehitlon, that Longomontanus hath invenred, improved, or flolen from the Finalumentum Afronomicinn, the Profthaphxrefis of Raymar: but if you will taise the trouble of calling upon me

[^11]me fome time hence, I will fleww you a method of folving triangles by proportional numbers quite dininet from this we have been talking of; which method came into my head fome fhort time ago, and will require many jears intenfe thinking and libour to bring it to perfection. Accordingly a few weeks afierwards, when Craig returned to Merchifton, Napier thewed him the firft rule draught of the Canon Alirificus. Craig, having occafion to writa very foon after to Tyeho Brahe, menrioned to him this work without faying any thing about its author*.

Justus Dyrgius alfo, inftrment maker and aftronomer to the Landgrave of Hefie, a man of real and extraordinary merit, is faid by Kcpler, in his Tabulo Rullolpbee, to have made a difcovery of the Logazithms, previous to the publication of the Cancon Mir:fifces. The paffage referred to is as follows: "Apices logiftici, Jufto Byrgio, multis annis ante cditionem Nepeiranam, viam prairerunt ad hos ipfiffinos iogarithmos (i. c. Briggianos) etfi homo cunctator et fecretorum finornm cunos, fertum in partu defituit, non all ufos puilicos educavit. That is the accenis (', ", '", '"', \&cc. denoting minutes, feconds, thirds, fourths, \&c. of a circular arch) led Byygius to tho wory fame legarithass (now in ufe) \dagger mmpy yours byfore Napicr's work appsamed: but y frics buing indolent and refured (or jealous) witho regard to bis own invertions: forfock thbis bis offspring (at or) in its birth, and trainel it not up fir public firvice.

* Nikil autem (writes Fiepier to Crugerus) Cupaa Ňpciranam rationem effe puto: ctfi quidem, Scotus ouidam, l'cris ad 'Tychonem anno 15ノみ, feriptis, jam fpem fecit Cancnis 1lius Mirifici. Kepl, Epif. a Gottheh. Hant chi. follo p. 4^{50}.

I Thus Dj T_{b} iu im ohe conccive 1 og. $a^{\circ}=0$

$$
\begin{aligned}
& \begin{array}{l}
L_{n} \sigma^{\prime}=1 \\
L_{0}^{\prime \prime} \cdot a^{\prime \prime}=2
\end{array} \\
& \mathrm{Lu}_{\mathrm{b}} \cdot a^{\prime \prime \prime}=3 \text { \& } \mathrm{c} a \text { Leing any number lofs than } 6 a,
\end{aligned}
$$

Ir may be obferved that this affair refts on the fingle teftimony of Kepler; but it wrould perhaps be confidered as a fipecies of herefy to doubt the teftimony of fo great a man. It las been inlinuated, hown ever, that from partiality to a countryman he mighte imazine he fat more than was really to be found in the papers of Byrgius*. Indeed the exprefion, fatum in partu defiluit, gives a colour of truth to the infinuation, and tempts one to think, that Juftus' acquaintance with the logarithms, was much on a par with that of Stifellins. Moreover, it is highly probable, that even the profound and penetrating Kepler might have perufed the manufcripts of Byrgius, without paying any particular attention to his principles of the logarithmes, had he himfelf not been? previoufly acquainted with Napier's theory of thofe numbers. Neither does it feem probable that Byrgius, had he known its value, could have been fo indolent, fo unreafonably referved, and fo dead to the fenfe of reputation, as to conccal from all the world an invention fo ufeful and fo glorions. We know alfo, that he communicated to his fcholars and others a mof ingenious and eafy method of conftructing the tables of the natural fines \dagger. But fetting all this entirely afide, and granting a great deal more in favour of Byrgius than Kepler's words impute to him; nothing can thereby be detracted from the merit of Napier, who never faw or heard of Byrgius' pretended difcovery of the logarithms; for, by Kepler's own confeflion, bomo cuntatuor et fecretorum fiornm cuflos, hoc inventum non ad ufus publicos calucavit.

$$
0
$$

[^12]

IT is therefore upon clear and indubitable evidence that, cum de aliis fere omnibus praclaris inventis plures contendant gentes, omnes Neperum lograrithonorum autborem agnofount qui tanti inventi gloria folus fine amulo fruitur*; while feveral nations contend for almoft every other famous invention, all agree in recognifing Napier as the unrivalled author of the logarithms, and as folely entitled to the glory of fo great a difcovery.

S E C T I O N IV.

napier's method of constructing the logarithmic canor.

HAD Napier's principal idea been to extend his logarithms to all arithmetical operations whatever, he would have adapted them to the feries of natural numbers, $\mathrm{I}, 2,3,4, \& \mathrm{c}$. In that cafe, having confidered the velocity of the two points as continuing the fame for a very fimall fpace of time, after fetting out from N and L (Fig. XI.), he would have taken Nn itfelf as the logarithm of $\mathrm{CN}+\mathrm{Nn}$, or Cn . Now as Cn furpaffes CN or unity by a very fmall quantity, it is cvident that, when raifed to its fucceflive powers, there will be found in the feveral products fuch as are very near in value to the natural numbers $1,2,3,4$, \&c. agrecably therefore to the above theory (Sect. III. prop. 9.) Nin being equal to d, and x being a pofitive integer, any natural number may be reprefented by $(1+d)^{x}$ and its logarithm in Napier's fyftem by xd.

By this formula might the logarithms of all the primary numbers 3, $5,7, \& 8$. be calculated; from which thofe of all the compofite numbers 4, $6,8,9,10$, \&c. are eafily deduced by fimple additions (Sect. IIL. prop. 7.) or by multiplications by $2,3,4,5$, \&c. (Scet. III. prop. 9).

Napier's

Napier's views were entirely confined to the facilitating of trigonometrical calculations. This is the reaton of his calculating only the logarithms of the fines; the log. of any given number being eafily deduced from thefe by means of a proportion.

In order to cffect his purpofe, he confidered that the radius, or fine total, being fuppofed to confint of an infinite number of infinitely fimall and equal parts, all the other fines would be found in the terms of a geometrical feries defencling from it to infinity; and that the logarithm of the radius being fuppoted cqual to zero, the logarithms of all the feries, beginning with the radius, would be found in the terms of an arithmetical feries, afcending from zero to infinity by fteps equal to the logarithm of the ratio in which the geometrical feries defecnds.

Agrefably to this idea, he fuppofes the radius $=\mathrm{CN}=1000000$, and firft conftructs threc tables, of which the firft contains a geometrical feries defeending from the radius to the hundrecth term in the ratio of 10000000 to 9999999 . It is formed by a continual fubtracting, from the radius and every remainder, its 10000000 th part. The decimals in every term are puflhed to the feventh place: a fpecimen of this table follows.

$10000000 \cdot 0000000$
$1 \cdot 0.000000$
$9999999 \cdot 0000000$
9999999

$9999998 \cdot 0000001$ 9999998
$9999997 \cdot 0000003$ 9999997
$9999996 \cdot 0000006$ and fo on to $9999900 \cdot 0004950$

Teie fecond table contains a geometrical feries defcending from tive radius to the fifticth term, in the ratio of 100000 to 99999 , nearly equal to that of the firt term 10000000.0000000 to the lafl 9999900 - 0004950 of the firft table. It is formed by a continual fubtracting, from the radius and every remainder, its 100000 th part. The decisoals are punced to the fixtli piace. A fpecimen of this table follows.

[^13]RADICAL TABLE.
FIRST COLUMN. SECOND COLUMN.

hatuase.	artisicial.	vatural.	artificial.
10000003.0000	\bigcirc	2900000.0000	100503.3
9995000.0000	5001 . 2	9805050.0000	10554.6
9990002. 5000	10002. 5	9890102.4750	110505.8
$9985007 \cdot 4987$	15003.7	9895157.4237	115507. 1
$99^{80014.2950}$	$20005 \cdot 0$	$0880219 \cdot 8+51$	$120508 \cdot 3$
9900473.5780	100025.0	2801468.8423	202523.2

and fo on to
columin 69.

natuzal.	artificial.
5048858.8900	6834225.8
$5-463.33 \cdot 46$;	6839227.
$5043811 \cdot 2932$	6840228.3
$541289 \cdot 3^{87} 79$	6849229.6
$\begin{gathered} 3038763.7435 \\ \text { and fo on to } \end{gathered}$	$6854^{2} 3^{2} .8$ and fo on to
49936.9.4034	6931250.8

Trie numbers and logarithms in the above table, coinciding nearly with the natural and logarithimic fines of all the arcs from 90° to 30°, he was enabled, by means of prop. I6. or 17. an 1 a table of the natural fines, to calculate the logarithmic fines to every minute of the laft 60° of the quadrant.

In order to obiain the logarithms of the fines of arcs belor 30°, he propofes two methods.

Tue firft is this. He multiplics any given fine of an are lefs than 30° by the number 2,10 , finding the logarithms of the numbers 2 and
and 1o by means of the radical table, or takes fome one of the compounds of thefe fo as to bring the product within the compafs of the radical table. Then having found, in the manner befure defcribed, the logarithm of this product, he adds to it the logarithm of the multiple he had made ufe of; the fum is the lugarithm fought.

The fecond method is derived from a property of the fines which he demonftrates. The property is this: Half the radius is to the fine 'of half an are, as the fine of the complement of half that are is to the fine of the whole arc. Hence, as is evident from a foregoing prop. that the logarithm of the fine of half an arc may be had by fubtracting the logarithm of the fine of the complement of half that are from the fum of the logarithms of half the radius and of the fine of the whole aic.

By this fecond method, which is much cafier than the firft, the logarithms of the fincs of the arcs below 45° may be obiained; thofe above 45° having been calculated by help of the radical table.

The logarithms of the fines to every minute of the quadrant being found by the ingenious methods above defcribed, the logarithuns of the tangents were eafily decluced by one fimple fubtration of the logarithm of the fine of the complement from that of the fine for each arc. The lowarithm of the radius, which fo frequently occurs in trisonometrical folutions, having heen very advantagcounty made equal to zero, the logarithms of all the tangents of arcs below 45° and of nil the fines mut have a difitent fign from that of the logarithms of
all the tangents of arcs above 45°. Napier chofe the pofitive fign for the former which he calls abundantes, and the negative for the latte: which he calls defetivi.

The arrangement of the numbers in Napier's logarithmic table, is nearly the fame with that neat one which is fill in ufe. The natural and logarithmic fines and the logarithmic tangent of an are and of its complement fand on the fame line of the page. The degrees are continued forwards from 0° to 44° on the top, and backwards from 45°. to 90° on the bottom of the pages. Each page contains feven columns; the minutes defcend from 0^{\prime} (to 30^{\prime} or from 30^{\prime}) to 60^{\prime} in the firft, and from 60^{\prime} (to 30^{\prime} or from 30^{\prime}) to 0^{\prime} in the laft of thefe columns. The natural fines of the arcs, on the lefe and on the right hand, occupy the fecond and fixth column, and their logarithms the third and fifth re1pectively. The fourth column contains the logarithms of the tangents which ave taken pofitively if they refer to the arcs on the left, and negatively if they refer to the arcs on the right hand. A fpecimen of this table is licre annezed.

$G r$ 44 mi．	Sinus．	LOGARITIIN：	DIFFERE：${ }^{\text {a }}$（1A．	LOGARITHM1．	stsus．	
33	7こーリーソ3	3555757	174591	337リ23	7132504	30
31	7511167	3j50808	168723	33^{82085}	7130.65	29
32	$70132+1$	3547851	1 （2905	． $388+945$	7128225	28
33	7615114	354485	157087	3387808	7126385	27
$3+$	70173.37	$35+00 \div 1$	1512 Cy	3390672	$712+344$	26
35	7019459	353×9 ¢＇9	115151	3393537	7122303	25
36	7021530	3536038	153633	$339^{6}+06$	7120261	${ }^{2} 4$
37	7023601	3533089	133814	3399275	7118218	23
38	7225078	3530142	12；9：6	3402146	$7: 16: 75$	22
$3)$	7027741	3527197	12217	3465010	711＋131	21
40	7029810	$35242+3$	116359	$3: 0784$	7112085	20
41	7031879	3521.311	$1105+1$	$3+10770$	$71100+1$	19
t^{2}	70339＋7	3510371	10.723	$3+136+8$	7107195	18
43	7036014	$35^{15+3}{ }^{2}$	$9800+$	$3+15528$	7155949	17
$4+$	$7-3.8081$	$3512+95$	92886	$3419+09$	7103902	16
45	7040147	350y500	－7：0n	$3+22292$	9い185	15
46	74．4213	35051526	$81+50$	3425176	5029 906	$1+$
47	$7=4.278$	$3503^{119} 9$	7；032	．34280 12	7007757	13
48	$70+53+2$	$3 ;=076 \%$	0：8：4	$3+30940$	7095708	12
49	$70+5406$	$3+27835$	64206	$3+338=9$	7093658	11
50	． 050461	$3+4+500$	58178	$3+.36730$	7091607	10
51	7052532	$3+9198$	52360	$34396=3$	7041550	9
52	7054394	3489000	$465 \div 3$	3＋425：7	7087504	8
53	7c566；	$34^{851.39}$	40723	$3+454 \cdot 3$	$7055+52$	7
54	7058716	$3+83211$	$3+9-8$	$34+83: 1$	7－ 3339	6
55	7060756	$3+80301$	21，0，0	$3+51211$	70513＋5	5
56	7062.36	$3+-7385$	23273	$3+5+112$	70－9298	4
	$70040 y$	$3+i 4+70$	1795	$3+57015$	7077236	3
58	50660； 3	3475557	116.7	$3+509=0$	70；5181	2
39	$7 \mathrm{ccyos1}$	$31856 \div 5$	5818	$34^{\prime \prime 2} \times 2=7$	70：1135	1
60	707106	345735	\bigcirc	$3+65735$	7071008	\bigcirc
						45
						mi．

In the Appendix to the Camonis mirifici confrih．7io，Napier delivers three other methods of computing the logarithms；but as thefe methods are generally better adapted to the conftuction of a fipecies of logarithms different from that I have deferibed，I fhall poftpone the account of them to the next fection，

Tine

Trie ingenious method by which Napier conftructed the radical table is almoft peculiar to the fpecies of logarithms it contains: It does not feem, however, to be fufceptible of all the accuracy one would with: for, notwithftanding the many precautions he had taken, particularly in pufhing his numbers to feveral decimal places, the logarithms in his canon often differ from the truth by feveral units in the lafl figure. Of this he himfelf was apprifed by finding different refults from the two methods of determining the logarithmic fines of ares under 30°. In order to remedy this defect, he propofes adding another zero to the radius; by which means, in purfuing this fame method, the logarithms of the fines might be obtained true to an unit in the eight figure.

S E C T I O N V.

THE COMMON LOGARITHMS DEVISED BY NAPIER AND PREPARED EX BRIGGS, AND THE METHODS PROPOSED BY NAPIER FOR COMPUTING THEM.

ONE capital difadvantage attending the fpecies of logarithms which firt occurred to Napier, arifes from the difference between the fign of the logarithms of the tangents of arcs greater than 45° and the fign of the logarithms of the fines of all the ares of the quadrant,

This defect was eafily remedied by fuppofing the fmalleft poffibls fine equal :o x and its logarithm o; as in this cafe, the logarithms of all the fines and tingents of every are in the quad:ant wouid have the fame fign. But, if the fame fpecies of logarithms is made ufe of, the logarithm of the radius, which occurs fo frequently in trigonometrical \{olutions, would be a number difficult to be remembered. More, therefore, would be loft than gained by this alteration. What fpecies of logritams will frec us from a difference in the figns, and at the fame time afford a logarithm of the radius that flall be cafily remembered and cafily manargci? It was this very queftion, in all probability, that led to the common logarithms, which, of all others, are the beft adapted
so our modern arithmetical notation. This fytem of logarithms has for its bafis 1 as logarithm of the ratio of 10 to $1:$ fo that the powers 1 , io, 100, 1000, \&c. of the number to have their refpective logarithms $\mathrm{c}, 1,2,3$, \&c. * Ilere, by the bye, it may be obferved, that not only Napier's manner of conceiving the generation of the logarithms, but his having computed that fpecies of logarithms, which has been difcribed; before thic common logarithms occurred to him, is a convincing proof of bis not taiking the bint of the logarithms from the rennark of Stijcllius, formerly mentioned. I think it is even beyond doubt that Napier, in common with all other arithmeticians acquainted with the Arabic, or rather Indian figures, had obferved that the product of any power of the number 10 by any other power of that number, was formed ly joining or adding the zeros in the one to thofe in the other; and that the quotient of any one power of that number by any ocher, was formed by taking away or defacing a number of zeros in the dividend ε qual to the number of zeros in the divifion; and all this without thinking that he was, at that time, making the fundamental remark of the logarithms. Nor will this feem at all furprifing to thofe who are acquainted with the hiffory of fcience and of the human mind. It is feldom that we dirrecily arrive at truth by the moft natural and eafy path.

* We have fcen Seet. III. that in Napier's fyftem the velocity of the two moveaulle points in N and I.
 ly equal to (Nn) \times or $[.0200000,1] \times$ In the common fyfem the velucity at L is lefs than the half of the velogity at N ; and the logarithm Ll of the number $[\mathrm{CN}+\mathrm{Nn}$] \times [or $1.0000000, \mathrm{I}]$ 。 is ncasly equal $[0.4342945] \mathrm{Nn} \times$. or [$0.0000000,0434,2945$] x : for in making this fuppofition the logarithm of r 0 , is found to be I . The logarithms therefore in Napier's fyttem are to the corrcfpondent ones in the common fyttem as I is to 0.4342945 or, what is the fame thing the common logarithms are to thofe of Napier as 1 is to 2.302535 I .

Perlaps the ftrongeft mark of the greatnefs of Napier's genius is not his inventing the logarithms, but his manner of inventing then, But to return; In this new fyftem the radius was made equal to the roth power 10000000000 of the number 10 , of which the logarithm in the newr fcale is ro. The divifion of the radius iuto fo great a number of parts, render the fine of the fimalleft fenfible are greater than 1 , of which the logarithm is zero: confequently, the logarithms of all the fines and tangents of the arcs of the quadrant, being on the fane fide of zero, have the fame fign.

Wire regard to the logarithm of the radius, its being cafily mamaged is fufficiently obvious.

Thus in our common logarithms the difadrantages of Napier's fyftem are avoided, whilit its advantages are rctained and united to feveral others. Of thefe additional advantages in the common canon, the moft capital is, that the units in the firff figure (to which Briggs gave the name of characterific) of the logarithm are fewer by one chan the figures of the number to which that logarithn correfpondso

Wilether Napier, or Briggs, firf imagined this nev fpecies of \log am sithnes, is a queftion which the learned do not feem as yet to have perfualy decided.

Tue only evidence we have on which a decifion can be grounded, is contained in the following particulars,
I. Is a letter to Ufher aftermards Archioifhop of Armagh dated the Ioth of March 1615 , the year after the publication of Napier's Canon. Briggs writes thus *, "Napier lord of Merchitton hath fet my head " and hand" at work with his nevv and adinirable logarithms: I hope "to fee him this fummer if it pleafe God; for I never faw a book "which pleafed me better, and made me more wonder."
II. Is the dedication of his Rabdologia, pubiifned 16 \% \% , Napier has the following words, "Atque hoc miki fini propofito, logarithmorum " canonem a me lonco tempore elaboratum fupcrioribus annis edendum "curavi, qui rejectis naturalibus numeris, et operationibus qux per "cos funt, difficilioribus, alios fubfituit idem preftantes per faciles " addtiones, fubftactiones, bipartitiones, et tripartitiones. Quorum "quidem logarithmorum fpecien alians nulto prafiantiorens whac ctiam in" veaimus, et creandi methodum, una cum corum ufu (fil Deus lon"giorem vitæ et valetudinis ufuram concefferit) evulgare fatuimus: "ipfan autem novi canonis fupputationem, ob infirmam corporis nofri "saletulinem, viris in hoc fudii gencre verfatis relinquimus: impri"mis vero doctifimo viro D. Hensico Briggio Londini publico Geo" metrix Profffori, et amico mihi longe charifimo".
III. In the preface to the logaritomorum cbilias frima, a table of the common logarithms of the firf thoufand natural members, Briggs expreffes himfelf in the following terms; "Why thefe logarithms differ "s from thofe fet forth by their illuftrious inventor, of cver refpectful " memory, in his caron mirificus, it is to be hoped, his ponthumous work "" will Thortly make appear."
IV.

* The life of Archbinop UTher and his corefépondence, by Richard Par, D. D. x666. folio, Fage. 36.

IV．In the preface the Arithmetica Logarithmeca＊，there is the fol－ lowing paragraph，＂Quod hi logarithmi diverfi funt（writes Briggs）ab ＂iis quos clariffimus vir baro Merchifonii in fuo edidit canonc minifi－ ＂co，non eft quod mircri，enim meis auditoribus Londini publice in ＂Collegio Grefhamenfi horum doetrinam explicarem；animadverti mul－ ＂to futurum commodius，filogarithmus finus totius fervxtur o zezo ＂（ut in canone mirifico）logarithmis autem partii decimæ ejufdem finus ＂totius，nempe finus 5 grad .44 min ． 2 I ．fecund．effet $1.00000,00000$ ： ＂atque ea de re fcripfi ftatim ad ipfum．Authorem，et quamprimum ＂hic anni tempus，et vacationern a publico docendi munere licuit， ＂profectus fum Edinburgum ；ubi humanifiune ab co acceptus hæfí ＂per integrum menfen．Cum autem inter nos de horem mutatione ＂fermo haberetur ；Ille fi idem dudum fenfilfe，et capuiffe dicebat：ve－ ＂runtamen iftos，quos jam paraverat，edendos curaffe，cloncc alios，fi ＂per negotia et valetudinem liceret，nagis commodos confecifet．If－ ＂tam autem mutationem ita faciendam cenfcbat，ut o effet logarithmus ＂unitatis et 1,00000 ．00000 firlus totius：quod ego longe commodiffi－ ＂mum effe non potui non agnofeere＂．＂Capi igitur ejus hortatu，re－ ＂jectis illis quos antea paraveram，de horum calculo ferio cogitare，et ＂fequenti æftate itcrum profectus Edinburgum，horum quos hic exhi－ ＂beo præcipuos，illi oftendi．Idem ctian tertia æftate libentinime fac－ ＂turus，fi Dcus illum nobis tamdiu fuperfitem cffe voluifet $\uparrow . "$

It may bere be obferved，that the manner in which Briggs propofed the application of the common logarithms to arigonometrical purpofes， S did

[^14]＋Ulacg in his title page to his edition of Brigb＂s log．Writes in the fame furport．＂I Ios rumeros
 ＊tavii，corumq̧uc coltur et ufum illufrait Hemricus Briggius＂：
did not at all tend to obviate the chief difadvantage of Napier's Canon: Fur according to Brigss' idea the fign of the logarithms of the fines and the tangents lefs than the raclius munt be the oppofite of the fign of the logarithms of the tangents greater than the radius. It feems probable, therefore, that Briggs had been led to the common logarithms in endeavouring to get rid of the indirect method of finding the logarithme of the natural numbers by means of Napier's logaritlumic Canon.

From the extracts above given it appears that the common logarithms lad occurred to Napier before they occurred to Eriggs: For the modenty and integrity of Napier's character put beyound difpute the trutls of what he mentioned to Brigg's at their firt inecting, and to the Earl of Dunfermline in the dedication of the Rabdologia. But if the liaving firft communicated an invention to the worid be fufficient to contitle a man to the honour of having firt invented it, Brigss las a beter title than Napier to be called the inventor of this happy inerinuvene ent of the logarithms *. For Briggs mentioned it 10 his pupils in Grefham College before the publication, in 1616 , of Edward Wi ight's tramiation of the Conion Mirificus, in the Preface to which Napier gave the firft notice of this improvement. With regard to the paffage in the preface to thic Cbilias prima publifhed after Napier's death, where Briggs feems to require an acknowledgment from the editor of the Canonis mirifici conftruetio, that be had alfo imagined the new logarithms; the cverfight or fault lies at the door of Napier's fon and not at his urrn. Fad Napier lived to publifh his laft mentioned work, it is hardly fofGble to entertain a fladowv of doubt, but that he would have done am-
pic juftice to Briges in this particular. Nayier and Briggs had a reciprocal efteem and affection for each cher, and there is not the finalleft cridence of there having exifted, ia the breaft of either, the leaft particle of jealoufy; a pafiun unbeconing and difgracefnl in a man of merit.

We fhall difmifs this amuir with obferving, I. That after the invention of the logarithms, the difcovery of the beft fpecies of logarithms was no difficule affur: : 2. 'That the dififovery of the common logarithms at that time, was a forcunate circumflance for the world, as there are fow noffeffed of ingenuity and patience fufficient for the confruetion of fuch extenfive and accurate tables as are thofe of Prigns' isithonetice logaritmica; and 3. That the invention of the new pipeies of logarithms is far from being equal to fume ctlier of Lriggs' inventions.

We come now to give a very brief cefeription of thofe other methods of conftucting the logarithms, propofed by Napier in the appendix to his pofliumous worl.

TIIE firt of thefe methods is the following: The lugarithm of 1 being fuppofed 0 , and the logarithm of 10 I followed by any number of zero, 10000000000 for example; this latt lograrthon and the fucceffive quotients divided (ten times) by the number 5 will give thefe (ten) logarithms 2000000000, 400000000, 80000000, 16000000, 3200000, $640000,128000,25600,5120,1024$ to which the refpective correfpondent numbers may be found by extracting the $5^{\text {th }}$ root, the $5^{\text {th }}$ root of the $5^{\text {th }}$ root, the $5^{\text {th }}$ root of the $5^{\text {th }}$ root of the gth root, \&xe. of
the number 10. Then the laft logarithm 1024 and the fuccefive quotients divided (ten times) by the number 2, will give thefe (ten) logarithms $512,256,128,64,32,16,8,4,2,1$, \&c. to which the refpegtive correfpondent numbers may be found, by extracting the fquare root, the fquare root of the fquare root, the fquare root of the fquare root of the fquate root, \& E . of the number (found as above directed) correfponding to the logarithm 102\%. By addition thefe (twenty) logarithms, and by multiplication their refpective natural numbers ferve for finding a great many other logarithms and their numbers.

Trie fecond method is this: The legarithms (o and 10000000000 for example,) of any two numbers I and io being given, the logarithm of any intermediate number (2 for example) may be found by taking continually geometrical means, firft between one of thefe numbers (io) and this mean, then between the fame number (10) and the laft mean, and fo on till there be found the number (2) wanted; of which the logarithm will be the correfponding arithmetical mean (3010299957) between the two given logarithms (0 and 10000000000).

Tire third method is as follows: Suppofe the common logarithm of a number not an integral power of so (2 for infance) find the numver of figures in the 1oth, looth, loooth, \&c. power of that number : The fuccefive numbers of figures ($4,31,302,3011, \& c$.) in theferpowers ($2^{10}, 2^{100}, 2^{1.00}, 2^{10000}$, \&c.) will always exceed by lefs than unity, but continually approach to the logarithm [30102099566, \&c.] required.
INVEITTONS or NAPIER.

The firft of thefe methods is very operofe, and by itfelf infufficient for contructing a complete logarithnic canon. The other two are much preferable. The laft is particularly well adapted for finding the logarithms of the lower prime numbers: For, fince the number of figures in the product of two numbers, is equal to the fum of the number of figures in each factor; except the product of the firft figures in each factor be expreffed by one figure only, which often happens; a fow of the firft, or left hand figures of the confecutive tenth powers of the given number, will fuffice for finding the number of figures in there powers.

This laft method depends on the dintinguifhing property of the common logarithms, which is, as was formerly obferved, that the units in $[x]$ the rational logarithm of a number $\left[1 O^{x}\right]$ are one fewer than the number of figures in that number [10 ${ }^{x}$]. Whence it follows, that the units in the irrational logarithm of any other number are not quite one fewer than the number of integral figures in this other number. Now, as in a feries of continued proportional numbers, the rcfult of any two terms is the fame, if one of the terms is raifed to the powcr indicated by the exponent of the other, or if this other is raifed to the power indicated by the exponent of the firft; any number raifed to the power indicated by the logarithm of 10 is enual to ro raiferl to the fewer indicated by the logarithm of that number. If, therefore, [the logarithm of 10 being 10000 , \&c.] Y is any number not an integral power of 10 and y its logarithm, we fhall have Y^{10000}, sic. $=10 \%$ and the number of figures in $Y^{\text {soceo }}$, \&c. will exceed y by lefs than 1.

S E C T I O N VI.

THE IMPROVEMENTS MADE ON THE LOGARITHESS.

THE improvements that have been made upon the logarithms after the death of their inventor, regard the theory, the methods of conftruction, the accuracy, extenfivenefs, and form of the tables of thefe. numbers.

However ingenious and beautiful Napier's manner of delivering the theory of the logarithms is, it mult be acknowledged that it labours under one capital impropriciy-treating geometrically a fubject which properly belongs oniy to arithmetic. Senfible of this, Kepler *, Nicolas Mercator \dagger, Hallcy \ddagger, Cotes \|f, and other mathematicians of the firlt note, have treated the theory of the logarithms in a different and truly fcientific manner. Their ideas are founded on the definition of the lo-garithms-Numeri rationem cxponcentes; which, although it is not exprefsly Napier's, is cafily deducible from his theory. Thus, in a geometrical progreffion, having any finite number c greater than unity for it's bafis, the exponent x is the logarithm of the ratio of the number c^{x} to c° or

* Chilias L.ogarithmorum 162+. Tab. Rudoph. 1627. \ddagger Phil. Trans. $1695 . \quad$ II Harmonia Mcufurar. 1722.
+ Logarithmo technia, 1658 ,
or unity: And, if the quotient of two quantities is taken as the meafure of their ratio, the definition is rendered more fimple, and x will be the logarithm of c^{x}. Upon this principic is founded the analytical theory of the logarithens in the appendir.

Ir was chiefly by the two laft rnethods, deifcribed in the foregoing foction, that Briggs confructed his logarithms. He invented alfo an original method of contructing logarithms by means of the firf, fecond, third, \&ic. differences of given logarithms. How he came by it is not known. He deferibes it in his arithmetica logarithmica and there is 2 demonftration of it in Cotes's Harmonia, in Bertrand's Mathematiques, and in the works of a great many other authors.

Edmund Gunter, Profeffor of Aftronomy in Greflam College, who Was the firft that publiffed a table of the logarithmic fines and tangente of that kind which Napier and Briggs had laft agreed on, applied, in theyear 1523 , or 1624 , the legarithms to a ruler which bears his name. This fcale is of very great ufe in Navigation, and in all the practical parts of geometry where much accuracy is not required. On the account of this logarithmical invention, Gunter, afer Napier and Brigg3, has the beft claim to the public gratitude.

After Napier's death almoft fifty jears elapícd before the inventions of the expreffions of the logarithms by infinite feriefes. Of thefe the three following, from which a great number of others are eafily derived, were the firf. *

Eogarithm of $(1-a)=-a-\frac{1}{1} a^{2}-\frac{1}{3} a^{3}-\& x . \cdots$
Logarithm of $\left(\frac{1+a}{1-a}\right)=a+\frac{1}{3} a^{3}+\frac{1}{5} a^{5}+\& c_{0} \ldots . .-Z$

Tirese formula X, Y, and Z will converge the more quickly ir pro. nortion as a is fuppofed lefs than unity; and the fum of a few terms will generally fuffice. They are the values of Napier's logarithms, but will reprefent every fpecies of logarithms by being multiplied by an indeterminate quantity u, which is called the modulus of the fyftem.

Tue formula X was invented by Nicholas Mercator in the year 1667, and publifhed in his Logaritbmotechnia the year following. Gregory of St Vincent, about twenty years before, had fhewn that one of the afymptotes of the hyperbola being divided in geometrical progreffion, its ordinates parallel to the other afymptote are drawn from the point of divivifion, they will divide into equal portions the flaces contained between the afymptote and the curve: From this it was afterwards pointcd out by Merfennus, that, by taking the continual fume rf thofe parts there would be obtained arcas in arithmetical progreflion correfponding to abfiffes in geometrical progreffion, and confequently that thefe arcas were analogous to a fyftem of logarithms *. Wallis, after this, had remarked that the ordinate correfponding to the abfcis a, counted on the afymptote of the equilateral hyperbola from a diftance counal to the femi-axis I , is equal to $\frac{1}{1+a}$; and he had demonftrated, in his Aritbmesica infinitorum publifhed in 1655 , that the fum of $1^{m}+2^{m}+3^{m}+\& C$. --- + $a^{\text {m }}$ (a reprefenting a finite quantity divided into an infinite num?-

[^15]ber of equal parts) is equal to $\frac{a^{m}+1}{m+1} *$. With thefe data Mercator fict himelf to find the arca correfpending to the abrcifs a, or, what is the fane thing, the logarithm of $(1+a)$, which he liappily accomplifhed by firft developing, in the manner now commonly practifed, the fraction $\frac{1}{1+a}$ into $1-a+a^{2}-a^{3}+\& c$. which had not been attempted before : then, fuppofing a cqual fucceffirely to $1,2,3,4, \& c .-\cdots$. a, and laftly, taking fucceflively the fums of all the zero, firft, fecond, third, Sc. powers of there numbers \dagger.

In the fame year 1668 James Gregory, in his Eseercitationes Gcometricce, gave a demonftration of Mercator's formula for the quadrature of the liyperbola different from his. He demonftrated the formula Y and found the formula Z by fubtracting Y from X. He found too the the value of $\log .\left(1-a^{2}\right)=-a^{2}-\frac{1}{2} a^{4}-\frac{1}{5} a^{6}-\& c$. by adding Y to X : but this formula may be looked on as a folecifm when applied to numbers: for the fame refult will be obtained by fupuofing a to be a fquare, in the formula Y, and even a more general refult may be obtained by fuppofing a to be any power of a number.

Sir Ifaac Newton, by his general method of the quadrature of curves, greatly fimplified that of the quadrature of the afymptotic fpaces of the equilateral hyperbola. The ordinate, (being as before $=$) $\frac{I}{I+a}$ muitiplied by a the fluxion of the abfeifs, becomes the fluxion of the corref. ponding afymptotic arca: This product, developed in the manner of Mercator, is $\dot{a}-a \dot{a}+a^{2} \dot{a}-a^{3} a+\& x$. Taking the fluent of each term
of this feries gives the dlucnt of the arca that is the logarithm of $\mathrm{I}+\mathrm{X}$ equal to X as before. It appears, from a letter of Newton's to Oldenburgh, that Newton had difovered the quadrature of the hyperbola by infinite but perhaps not general feriefes, before the publication of the Logarithotechiza*. Something of the fame kind had alfo been difcovered by Lord Brouncier \dagger.

The arcas of the equilateral hyperbola, as above deferibed, exhibiting the logarithms of Napicr's is It:m, occafioned the appellation byperbolic to his logarithms. It is dificult to account for the propricty of this epithet to Napicr's logarithms; fince not only the afymptotic arcas of equilateral but thofe of any other hyperbola may be made to reprefent every poffible fipecies of logarithms, by fuppofing, in the fame hyperbola, the origin of the abfciffes on the one afymptote at different diftances from its interfection with the other. Thus the afymptotic are cas of the equilateral hyperbola will reprefent the common logarithms, if the origin of the abfeifes is taken at the point on the afymptote where the ordinate is $u=0.43429$ Exc. the diftance of that point from the other afymptote being greater than the femi-axis but equal to $1 \neq$. But if the origin of the abfiffes is taken equidinant from the fummit of the hyperbolu and the interfection of the afymptotes, the afymptotes of the hy perbola, whofe arcas reprefent the common logarithmes, are inclincd to each other about $=5^{\circ} \cdot 44^{\prime}$, of which the fine is $u=0.43429$ \& c . $\|$

Tine formulic X and Y have alfo been deduced from the logarithmic \S-a curve whofe abfeifes are the logarithms of its ordinates or converfely
*Wallifi Opera. vol. 3. p. 634 and feq. citcd by Ifutton. + Montucla. \ddagger Apperdix, Iyperbola. || Huton's Math. '1'ab. § Eucyclopedic au mot Lngarihamique. Appetdis, Logarithmic.
converfciy *. This curve is faid to have been invented by Edmund Gunter \dagger; but its propertics, fome of which are very remarkable, do not feem to have been much known and attended to till the time of Huygens, who enumerates them in his Caufa gravitutis. It was confidered afterwards by Leibnitz, Bernoulli, l'Hopital, and a great many others. The manner in which it is treated by John Keill in the tract on the logarithms fubjoined to his edition of Euclid, facilitates very mucis the conception of thefe numbers. In the Appendix the reader will find this curve treated in a new manner, with an enumeration of fome new properties.

The fame formulx X and Y are eafily deduced by the fluxionary method from Neper's generation of the logarithms. From what is faid in a foregoing fection it is evident that (Fig. Xl.) the velocity of the firft moveable at the point N is to its vclocity at the point N^{\prime} as CN is to CN^{\prime}; but the velocity of the firft moveable at the point N is the fame with the velocity of the fecond moveable point at (any point of K.) L': thercfore, in the language of fluxions, if $\mathrm{NN}^{\prime}=a, \overline{\log \cdot(\mathrm{I}+a)}: \dot{a}:: \mathrm{I}:$ $1+a$, therefore $\overline{\log \cdot(\overline{1}+a)}=\frac{\dot{a}}{1+a}=\dot{a}-\dot{a} a+a^{2} a-k c$. therefore Log. $1+a=a-\frac{a^{2}}{3}+\frac{a^{3}}{T}-\& \mathrm{c}$. If the points n^{\prime} and l^{\prime} are taken, it may be fhewn in the fame manner that $\log .[1-a]=-a-\frac{a^{2}}{2}=\frac{a^{3}}{3}-\& c$.

In the year I 695, Edmund Halley greatly improved the theory of the logarithms, by deriving the feriefes for their conftruction from the prin-

[^16]them, form the logarithm of the number arifing from the junction of the digit at top or bottom to the figures in the firft column, correfponding to faid four figures. When the laft of the three firft figures of a logarithm, correfjonding to a number formed by figures in the firt column and a fignificant digit at top, is found augmented by unity, thefe three figures, together with the corref fondent fours, are moved a line downwards; by this means one avoids the miftaking one three figures for another, which, without fpecial care, muft often be the cafe in ufing Sherwin's, Gardiner's or Hutton's Tables. The laft column contains the differences of the confecutive logarithms, together with the proportional parts correfponding to the nine digits. With thefe proportional parts one can compute by the eye alone the logarithms, not in the table, of all the numbers lefs than 1029600, and, with very little trouble more, thofe of all numbers lefs than 10296000 , as exactly as eight places of figures can cxhibit them. In the table of the logarithmic fines and tangents, the degrees and minutes are difpofed nearly in the fame manner as in Napier's Table. Each page contains eleven columns. In the firft and laft are the minutes. In the fecond and laft but one are the feconds $0,10,20,30,40,50,0$, and $0,50,40,30,20,10,0$, of which the firtt and laft zeros are in the fame line with and the reft between each fucceedino minute. In the third, fifth, ferenth and ninth columns are the logarthmic fincs or cofines, cofines or fincs, tangents or cotangents, and cotangents or tangents, accorling as they refer to the degrees at top and the minutes and feconds in the firtt and fecond column, or to the degreecs at the botton and the minutes and feconds in the laft penult columns. The other three columns contain the differences of thete logarithms. The above defcription will become perfectly intelligible by infiecting the following fipcimens of thele Tables.
©4 LIFE，WRITINGS，$A N D$

TAB．DES LOG．DES NOMB．NAT．
N． 14800 I．． 170

N	\bigcirc	1	$=$	3	4	5	6	7	8	9	diff．	lart．
1408	170.2617	2011	3204	$3+27$	3791	$4=84$	4377	＋5－0	＋ $3^{0}+$	5：57	${ }_{5}^{5} \begin{aligned} & 147 \\ & 1 / 76\end{aligned}$	
$\therefore 1$	5551	58.4	¢13：	$6+30$	6723	7017	7310	7603	78,6	8（8）	－${ }^{170}$	
82	$\mathrm{C}_{4} 82$	8775	2－68	1），61	yC54	9347					－-35	293
	171.						0240	0534	$\mathrm{CS}_{26} 6$	1119	1／105	1 29 $=$ 39
¢ 3	14：2	1704	1297	2290	2583	2876	3168	． 3461	3754	$40+6$	－	3 39 8.
i_{4}	4.339	$4{ }^{1 / 3} 3$	$41,2.4$	5217	5509	5802	6095	6387	6683	1972		3 4 4 187
1485	7205	7557	7849	8142	C435	8727		9311	9604	ずも6		5147
							2019					4 176
86	172.0188	0.80	$0: 73$	1065	135\％	1649	1241	22.33	2526	2818		？${ }^{205}$
87	3110	8.402	3604	3.86	4278	4570	＋i62	$515+$	5446	5737	292 1129	
88	6029	${ }_{6}{ }_{3} 21$	6013	6905	－197	7.988	7780	8072	8364	8655	215%	91.6
8	8947	2：39	9530	9822								
	173.				0117	0405	0697	0，88	1280	1571	4 117 5 146	
349°	186_{3}	2154	24.6	2737	3028	3320	3511	3903	4194	4485		
．	－	．	．	．	．	．	．	．	．	．		
－	－	－	－	－	－	－	－	－	－	－		
－	－	－		－	－	－	－					
－	－	－	－	－	－	－	－	－	－	－		
N	0	1	2	3	4	5	6	7	8	9		

TAB．DES LOG．DES SIN．ET TANG．
12 DEC．

These Tables, which are executed with a new and clegant type on good paper, form a fina!! oftavo volume. There is cvery probability in farors of their correctnefs. They are conied from the Iondon cdition of Gardiner printed in $1 / 7+2$, which is in the li:ghent entmation for that quality. Irfeffeurs Callet. Leveque and Pruelhomme, three good mathematicians, revifed the proof fheets, as did :ifo the cditor M. Jombert three feveral times. N. Didot fens, the printer furmed the models of the types and founded them on purpotic, and the cditor avers that, during the courfe of the imprefion, nome of the figures came ont of their place; a precious adrantage which he imputcs to the jufterefs of the principles that M1. Didot has enablithed in his foumery.

Thers is an additional improvement, which I am furprifed none of the cditors of our common logarithms has thought of making. What I :llude to is the uniting, to the tables of the logarithms of the natural numbers and of the fines and cofines, the logarithms of their reciprocals (cheir arithmetical complements *, as they are called). By this means, all the common operations by lozarithms might be performed by addition only, without any trouklc. 'The legarithms of the natural numbers might be difpofed on the left hand, and thofe of their reciprocals on the right hand pages. 'The characcrintics of the latter, being equal to the difference between so and the number of integral figures in the natural numbers, would be as cafily found as thofe of the former. The logarithms of the reciprocals of the fines and cofines might, in cach page, be put in the fume line with the logarithms of the fines and cofines, having.

* The arithmetical comitements of the legarithms were han thought of ly Juhn Spucieth, who, in
 of the figns in Napiers logamithas liy iLut conterisatec.
laving their common differences between them, as the logarithms of the tangents and cotangents, which are reciprocals of each other, have theirs. It is very likely that the prefent edition of the Tables portatives will foon be exhaufted. If, in a fecond edition, M. Jombert adopts the propofed amelioration, he will do an effential fervice to the community. r. The computation might be accomplifhed, by a good arithmetician, in little more than three hours labour cvery day for half a year. 2. The type and length of the page being the fame, the book would be little more than a fourth part thicker, and would ftill be of a convenient fize.

Is the month of May, $1-S_{4}$, there were publifhed propofals for publifhing, by fubfcription, A Tuble of Lagarithmic fincs and tangents, ta'en at fight to every fecond of the quadrant, accurately computed to fearn places of figurcs befides the iudex: to zobich woill be prefixed a table of the logarithms of mumbers fiom I to 100000 , inferibed, by permifion, to the right bonourable and bonourable the Commiffroncrs of the Board of Longitude, ly Michael Taylor, one of the computers of the Nimtical Epbemeris, and anthor of a Sexagefimal Table, pulified by order of the Commifroners of the Board of Longitude. The plan of this work was fubmitted to the Board of Iongitude, who came to a refolution to give Mr Taylor a gratuity of three hundred pounds ferling towards defraying the expence of printing and publifhing it. This circumftance ought to be a fulficient recommendation of Mr Taylor, and it is to be hope.l, that his laborious and ufeful undertaking will mect with the enconsagement and recompence from the public which it fo juftly deferves. In the fpecimen amexed to the propofals, the degrees being as ufual at the top and bottom of the page, the feconds occupy
ciples of common Algebra independently of any curve. He was the firft alfo, if I miftake not, that gave the general feries for computing the numbers correfponding to given logarithms*. The analytical theory of logarithms, in the Appendix, is nearly on Halley's plan, but was materially finifled before the author faw his treatife.

To defcribe, or enumerate, all the tables of logarithms, which have been publifhed fince the invention of thefe numbers, would be tedious and ufelefs, and indeed next to impoflible. We fhall reftrict ourfelve to thole which are the mof confiderable and the mof ufeful.

In the jear I_{24}, Benjamin Urfinus, mathematician to the Elector of Brandenburg, publifhed at Cologne, with his Trigonometria, a Table of Napier's logarithms of the fines to every ten feconds of the quadrant. He feems to have been at much pains in computing it, and, in order to obtain the logarithms true to the neareft unit in the cight figure, he fuppofed the radius followed by an additional zero, as Napier had advifed t.

In the fime year, Kepler publifhed, at Marpurg, his Chilins Logia ritbmorum ad todidem mumeros rotundos \&c. and, in the year following, a fupplement to it. In this table, the logarithms are of the fame kind With thofe of Napier, but adapted to fies in arithmetical progrefion.

Smalle tables of the fame fpecies of logarithms lave been publifhed by 'T. Simfon in his fluxions, by Dr Hutton in his Math. Tab. and by a great many others, to cight places. In Eulurs Inticuturio in andylyen

$$
\mathrm{X}
$$

[^17]infinitorum, there is a finall table of the firf ten natural numbers wita their logarithms to twenty fix places; and, in Bertrand's work formerly mentioned, there are the logarithms of a great many of the firft hundred natural numbers, and of feveral others, to the fame number of places. Some of thefe differ from the truth, by fome units only, in the laft figure, and the logarithm of 61 is wrong in the fixteenth figure from the left hand. In the Appendix there is a table of Napier's logarithms of the firft hundred and one natural numbers to twenty feven piaces.

In the year 1624 , Briggs publifhed at London his Aritbmetica Logatsithmica. This work contains Briggs' or the common logarithms, and. their differences, of all the natural numbers from I to 20000 , and from 90000 to 100000 to fifteen piaces, including the index or characteriftic. In fome copies, of which there is one in the Library of the Univerfity of Edinburgh, there is added the logarithms of the numbers from 100000 to 101000, which Briggs had computed after the former had been printed off. Before his death, which happened in 1630 , this au: thor completed alfo a table of the logarithmic fines and tangents to fifteen places, for the hundredth part of every degree of the quadrant, and. joinced with it the natural fines, tangents, and fecants, which he had before calculated. This work which Briggs had committed to the care of Henry Gellibrand; at that time profeffor of aftonomy in Grefham College, was tranfmitted to Gouda, where it was printed under the infrection of Ulaca, and was publifhed at London in 1633 , with the title of Irigonometria Britamica.

Thissbetables of Briggs" have not been cqualled, for their extenfivenefs and accuracy together; thofe of his logarithms that have been recxamined
examined having feldom been found to differ from the truth by more than a few units in the fifteenth figurc.

In the year $\mathrm{I}_{2} \mathrm{~S}$, Adrian Ulacq of Gouda, in IFolland, after filling up the gap betwixt 20000 and 90000 , which Briegs liad left, republifhed the Aritbmetica Logaritbmica, together with a table of the logarithmic fines, tangents, and fecants, to every minute of the quadrant. Some years afterwards; he publifhed his Trigonometria Artificialis, containing Briggs' logarithms of the firt twenty thoufand natural numbers, and the logarithmic fines and tangents, with their differences for every ten feconds of the quadrant. In both thefe works, the logarithms are carried to the eleventh place including the index, and are held in much eftimation for their correctnefs.

Abrailam Sharp, of Yorl:hire, publined with his Geometry Improved, in 1717 , a table containing Briggs' logarithms of the firt hundred natural numbers, and of all the prime numbers from 100 , to I 100 and of all the numbers from 999980 to 1000020 , to fixty two places including: the characteriftic. There is the greateft probability of all thefe logarithms being correct. The laft forty-one [from 999980 to 1000020] were verified afterwards by Gardiner.

Tables of the logarithms, carried to fo great a number of places as thofe of Sharp, Briggs, and Ulacq, are feldom ufed; the logarithms to cight places inclufive of the characteriftic being fuficient for all common purpofes. The mof ufeful tables are thofe which have the logarithms correct to the nearelt unit in the eight figure, difpofed fo as to

```
82 LIFE, WRITINGS, AND
```

take up little room, and, at the fume time, to afford the eafieft and moft fipecty means of finciing the intermediate logarithns, or numbers correfponding to given numbers or logarithms The form of the tables beft adapted to anfiver thefe purpofes was firft introduced by $\mathrm{Na}-$ thaniel Roe, a clergyman in Suffolk, in his Tabula Logaritomica, printed at London in 1633 . This form was improved by Joln Newton, in his Trigonometria Britunnica publifhed at London in 1658 , and by Sherwin in his Mathematical Tables, of which the firfe edition was printed in 1705. It has recrived additional improvements in Mr Callet's cdition of Gardincr's Tables printed at Paris in 1783 .*

Tue difpofiton of the tabics is as follows: Each page of the logarithms of the natural numbers is divided into twelve columns. The firft column, titled N at top and bottom, contains the natural number. In the fecond column, marked O, are the logarithnes, without the characicriftic, of thefe numbers: the three firit figures, belonging to the logarithms of more numbers than one, are fepatated by a point from the other four figures of the logarithm of the firf of thefe numbers and are left out before the other four figures of the logarithms of the reft. In cach line of the next nine columns, marked with the nine fignificant digits $\mathrm{I}, 2,3$, Sic. are four figures, which, united to the firft thrce ifolated figures of the fecond column in the fame line with them, or above them,

- Tâles portatives de Lozarit...nes, publices a Londros par Gardiner, Angmentee et perfectionees cians letr difpofition par M. Callet, et corrigces avec la plus ferupuleufe exactitude: contenant les iogaritimes dics nombre depuis I jufqu'a 102960 , les logarithmes des finus and tangentes, de feconde en feconde pour les dux preaiers degres et de 10 en 10 fecondes pour tous les degres du quart de circle; precedecs d'un precis elementaire fur l'explication et l'ufage des logarithmes et fur lcur application aux calculs d'interets, a la Geometric-pratique, a l'Aftronomic ct a la Navigation; fuivies

the firt column : the minutes are difpofed along the tops and bottorns of the other columns: immediately below the minutes at top fand the characteriftics, and below them the three next common figures of the logarithms; the other four figures filling the columns. It is to be regretted, that an improvement ${ }_{2}$ finilar to M. Callet's, has not been adopied in this work, the printing of which was begun before the date of the propofals.

The tables of logarithms which, with thofe that have been mencioned, are moft in eftimation, are thofe of the edition of Sherwin, which was corrected and publiilied by Gardiner in the fame year (1742) with his own tables-Thofe by Deparcieux*, and thofe of the finall cditions of Ulacq publifhed at Lyons in 1670, and $1750 \dagger$.

The London edition of Gardiner, which has been defervedly efteemed as containing the moft accurate fet of tables, is not entirely free from errors. There is, at the end of Dr. Hutton's tables, a lift of about fifty errors in the logarithms of the natural numbers, fines and tangents; twenty of which he himfelf difcovered in collating the proofs of his book with the like parts of Gardiner's; all of thefe, however, that gentleman obferves, are not in all the copies of this edition. In the Avignon edition of Gardiner (1770), the errors pointed out by Dr Hutton are above feventy. All the errors of the London edition are corrected in the Tables portatives, excepting that of the logarithm of the natural numbers 64445 .

- Montuclar + Hution.
Z
Before

Before conchuding this fection, we fhall fay a few words of the logarithms called logiftic. The logiftic logarithm of a number of feconds is the excefs of the logarithm of $3600^{\prime \prime}$ above the logarithm of that number of feconds. A table of thefe logarithms was firft given by Strut in his Afronomia Carolma publifhed in 166 I *. A fumilar one is given in feveral of the common logarithmic tables.

S E C T I O N VII.

THE USE OF THE LOGARITHNS.

THE general ufe of the logarithms, as was before obferved, is to convert every fpecies of multiplication and divifion into addition and fubtraction, and to raife quantities to any given power, and to extract their roots by eafy multiplications and divifions. Examples of thefe operations, particularly in trigonometry, are prefixed to almoft all the moft confiderable tables of logarithms. We beg leave to refer the reader to Gardiner, Callet, Sherwin, and Hutton, where he will find the theory, conftruction, and application of thefe numbers.

The theory of the logarithms has put it in our power to folve, with great eafe, an equation in algebra, which before could not be folved but with difficulty and tatomement. In the equation $a^{x}=b$, if b is the unknown quantity, its value is found by multiplying a by itfelf as often as there are units in $x-1$: Again, if a is the unknown quantity, its value may be found by extracting the x th root of b. But if x is the unknown quantity, algebra, without the logarithms, can furnifh no direct rule for finding its value. This, however, is eafily accomplifhed
by the affiftance of the logarithms. Let L denote the logarithm of the guantity to which it is prefixed. Now fince $a^{x}=b$, it is evident that $\mathrm{La}={ }^{x} L b$: but $L_{a}{ }^{r}=x L a$: therefore $x L_{a}=L b$: therefore $x=\frac{I b}{L_{a}}$.

Tue Solution of Equations of the form $\mathrm{a}^{\mathrm{x}}=\mathrm{b}$ is of great importance in political arithmetic. Suppofe that a quantity at firft m, being increafed at the end of every equal portion of time by a quantity c, augments at the rate r; and that it is found, at the end of a number x of thefe portions of time, to be augmented to n; the equation exprefling the relation of thefe quantities to each other is $(I+r)^{s}=\frac{n+\frac{c}{r}}{m+\frac{c}{r}}$.

By the help of the logarithms, this formula, among other purpofes, ferves for finding with facility in what time a fum of money n might be paid off by finking at firft a fum m, and at the end of every year another fum c, leaving their intereft r to accumulate. In what time, for example, might the national debt of Great Britain, 270 millions of pounds Sterling, be extinguifhed by finking one million every year and allowing its intereft, five per cent per annum, to accumulate? The calculation is as follows,

$$
\begin{array}{rlrl}
n & =270000000 & n+\frac{c}{r} & =290000000 \text { Log. }=8.4623980 \\
m & =1000000 & m+\frac{c}{r}=21000000 \text { Log. }=7.3222193 \\
c & =1000000 & \text { Log. }\left(\frac{n+\frac{c}{r}}{m+\frac{c}{r}}\right)=1.1401787 .
\end{array}
$$

$$
\begin{aligned}
& \text { INVENTIONS of NAPIER. } \\
& r=\frac{5}{100}=\frac{1}{20} \\
& 1+r=1+\frac{1}{20}=\frac{2 r}{20} \log \cdot 21=1 \cdot 3222193 \\
& \frac{c}{r}=20000000 \\
& \text { Log. 20 }=1 \cdot 3010300 \\
& \text { Log. }(\overline{1+r})=0.0211893 \\
& \therefore=\frac{1.1401787}{0.0211893}=\frac{11401787}{211893} \\
& \text { Log. 1i401787 }=7.0569729 \\
& \text { Loy. } 211893=5 \cdot 3261167 \\
& \text { Log. } x=1 \cdot 7308562, x=53.809
\end{aligned}
$$

In lefs than fifty four years, therefore, the Britifh nation might get quit of their debt, if they could raife annually a million Sterling; over and above the amount of the intereft of that debt and the expences of government.

Tue fame equation under the form

$$
n=\left(m+\frac{c}{r}\right) \times(1+r)^{\times}-\frac{c}{r}
$$

ferves for computing the number n of inhabitants of a country which, having at firft m inhabitants, has received every year for x years a number c of foreigners, and has increafed annually at the rate r. For example, fuppofe the number of the inhabitants of the United States of North America to be at prefert three millions, that they receive ten thoufand emigrants yearly, and that the population in that country increafes at the rate of one to twenty per annum; What will be the numA 2
ber of inhabitants of thofe States a hundred years hence? The calculation is as follows:

$$
\begin{array}{rrr}
m=3000000 & m+\frac{c}{r}=3200000 \log \cdot & =6.5051500 \\
c=10000100 \log \cdot(1+r)=\log \cdot(1+r)^{100} & =2.1189300 \\
r=\frac{1}{20} & \text { Log. }\left(m+\frac{c}{r}\right)(1+r)^{x} & =8.6240800 \\
\frac{c}{r}=200000 & \left(m+\frac{c}{r}\right)(1+r)^{x} & =420800000 \\
x & =100 & \frac{c}{r}
\end{array}=2000000 .
$$

Hence it appears, that were the lands of the United States extenfive enough, and were the fame circumfances, favourable to population as at prefent, to continue for one hundred years, the number of their inhabitants would amount to more than four hundred and twenty millions, which is a good deal greater than twice the number of inhabitants computed to be in all Europe.

The logarithms alfo, after the invention of fluxions, give rife to a fpecics of calculus called the exponential. This calculus was invented by John Bernoulli and firft publifhed in the year 1697^{*}. It is founded on thefe two principles: 1 . The logarithm of the power of a quantity is equal to the product of its exponent by the logarithm of its root, or $x \mathrm{La}=\mathrm{La}^{x}$: 2. The fluxion of the logarithm of a quantity is proportional to the quotient of the fluxion of that quantity by that quantity

[^18]city or $L \dot{a}=\frac{\dot{a}}{a}$. The exponential calculus is neceffary for the inveftigation of curves, the exponents of whofe abfciffes and ordinates, or their functions in the equations to thefe-curves, are themfelves variable quantities, $u, v, \approx, \& c$. Exponential curves, fuch, for example, as have for the value of their ordinates $x^{n}, x^{v}, x^{v^{v}}$, \&c. are faid to be of the firf, fecond, third, \&c. order. What are the fubtangents, curvatures, aiicas, \&c. of curves of this nature ? Let SMM', (Fig. XII.) be any curve, its abfcis $\mathrm{CSP}^{\prime}=x$ and ordinate $\mathrm{P}^{\prime} \mathrm{M}^{\prime}=\mathrm{y}$ and let there be another curve $\sigma{ }^{\prime} \mu \mu^{\prime}$ having the fame abfifs with the former, and its ordinate $\mathrm{P}^{\prime} \mathrm{M}^{\prime} \mu=$ $z=\mathrm{x}^{y}$ for example, let $p^{\prime} \pi^{\prime} v^{\prime}$ be an ordinate infinitely near to $p^{\prime} \mu^{\prime}$ and $\mu^{\prime} \tau^{\prime}$ perpendicular to it, and let $\tau^{\prime} \mu_{0}^{\prime}$ be a tangent at the point μ_{0}^{\prime} : the 'ímilar triangles $\tau^{\prime} p^{\prime} \mu_{0}^{\prime}$ and $\mu_{\prime}^{\prime} \tau^{\prime} v^{\prime}$ give $\tau^{\prime} p^{\prime}: p^{\prime} \mu^{\prime}:: \mu^{\prime} \tau^{\prime}: \tau^{\prime} \nu^{\prime}$, tincrefore the
 $=\dot{y} \dot{L} \bar{x}$ that is $\frac{\dot{z}}{z}=y \dot{L} x+\dot{y} L x=\frac{y \dot{x}}{x}+\dot{y} L x$, and therefore $\tau^{\prime} p^{\prime}=$ $\frac{x \dot{x}}{y \dot{x}+x \dot{y} L x}$. Hence it is cvident that the relation of x to y, that is, the Equation to the curve SMM' being given, the fluxion of 5 may be exprefled by fome function of x, and its fluxion may be obtained; which value of the fluxion of y being fubrtituted in the fraction $\frac{x \dot{x}}{y x+x y} L$ and the fluxion of x expunged from its numerator and denominator, there will be obtained a finite exprefion of the fubtangent $\tau^{\prime} s^{\prime}$ of the
curve cu.u'. For evample, let the curve SNM be the logarithmic: we have $y=L x^{*}$: therefore $\dot{y}=\frac{x}{x}$; therefore $\sigma^{\prime} p=\frac{x}{2 L x}$. From the value of the fubtangent and from the ecruation ($z=x^{\text {r.x }}$ to the curve ouy ${ }^{\prime}$ a great many of its properties are eafily deduced. The ordinate $S \sigma$ at the fummit of the curve is equal to the abciss CS : for $y=L x=0$ and $z=x^{\circ}$ $=C S$. The tangent at the point σ is parallel to the axis CSD : for Lx $=0$ and $\tau^{\prime} \beta^{\prime}=\frac{x^{\circ}}{20}=\frac{7}{5} 00$. The ordinate $c s$ is an afymptote to the curve u.om: for $x=0$ and $L_{x}=-\infty$ and therefore $\tau^{\prime} p^{\prime}=\frac{0}{200}=0$. The tangent paning through the point c meets the curve $\sigma \mu_{1} \mu^{\prime}$ at the extremity of the ordinate $z=\sqrt{x}$: for $x=\tau^{\prime} \beta^{\prime}=\frac{x}{2 L x}$; therefore $L x=\frac{1}{2}$. The tangents to the points M and μ, where $y=\frac{1}{\sqrt{2}}$ and $z=x^{\frac{1}{\sqrt{s}}}$, mect in the fame point τ in the axis: For the fubtangent of the logarithmic c is $=$ $x L x=\sim \beta=\frac{x}{2 L x^{\prime}}$; therefore $L^{2} x=\frac{r}{2}$ and $L x=\frac{1}{\sqrt{2}}$. The curve $\sigma \mu_{\mu} \mu^{\prime}$ may be called the Numerico-Logaritbmic: and if the equation were $(\mathrm{Lx})^{x}=\mathrm{z}$ or $)^{x}=z$ there would be generated a curve which might be called the Logaritbrio-numeric.

Tue above fmall fpecimen may fuffice for giving an idea of the ufe of the exponential calculus. The reader will have obferved that we have made ufe of Napier's, or, as they have been called, the natural logarithms. It would have been an eafy affair to have made ufe of any other

[^19]other logarithms. It may here be obferved that the logarithmic itfelf, is an exponential curve of the firt degree or orler: for the abfcifs x is of the form c^{y}, c being a conftant quantity greater than unity and having I for its logarithm.

Those, who wifh to enter fully into this fubject, may confult the Works of John Bernoulli, and the Analyse des Infunimens petits of the Marquis de l'Hopital with M. Varignon's Eclaircifements.

Another ufe of the logarithms is to folve the problems of failing according to the true chart, independant of a table of meridional parts. It was firft publifhed, by Mr IH. Bond, about the year $16+5$, that the meridian line wass analogous to a fale of logaritbmic tangents of balf the con:plements of the longitudes*. Nicolas Mercator feems to have been the firft to demonftrate this property of the meridional line. But he kept his demonftration fecret. James Gregory firt publifhed a demonftration of it in his Excrcitationes Gcometrica. Halley, afterwards, (about the year 1695) gave a much better one in the philofophical tranfactions. On this fubject the reader may confult Robertfon's Navigation, where he will find it treated in a plain manner and illuftrated with examples.

Tue logarithms alfo exhibit the afymptotic areas of the liyperbola \dagger.

Tuey are likewife of great fervice for the fummation of infinite feriefes in the calculus of fluents. This is true particularly of Napier's B b
logarithms,

- Phil. Trans. Noz 1g. + Sic Sect. vi. and Appcadia,
logarithms. 'The fum, for example, of about feven hundred millions of terms of the infinite feries $1-\frac{1}{2}+\frac{1}{5}-1$, \&ec. is equal to $0.6931+$ 718 , Napiers logarithrn of the number 2.

S E C T I O N VIII.

NAPIER'S IMPROVEMENTS IN TIIE TIEORY OF TRIGONOMETRE,

WE obferved before that the Arabs, fetting afide the chords of the double arcs, which rendered Trigonometry rery complicated among the ancients, made ufe of the halves of thefe chords to which they gave the name of the Sinis. To that ingenious people we owe alfo the three theorems which are the foundation of our modern fpherical trigonometry. By thefe theorems all the cafes of rectangular \AA_{p} herical triangles and all the cafes of oblique fpherical triangles may be refolved, excepting when the three fides, or the three angles only, are the data. It was Regiomontanus who firf invented two theorems for the folution of thete two cafes: by which means the theory of trigonometry was perfected. Onc of thefe theorems which ferves for finding an angle from the three fides is, The rectungle under the fincs of the two fides of any Spherical triangle is to the finare of the radins; as the difference of the verfed fines of the bafe and the difference of the troo files is to the arerfed fine of the vertical angle. The other theorem, of itfelf, is not fuflicient for the purpofe of finding a fide from the three angles.

This laft cafe, however, may be refolved into the former by means of the fupplemental triangle, fo called becaufe its fides are the fupplements of the angles of the other. This invention is due to Bartholomus Pitifens*, who flourifhed in the beginning of the feventeenth century.

Tine improvements made by Napier on this fubject are chiefly three. 1. The gencral rule for the folution of all the cafes of rectangular fipherical triangles, and of all the cafes of oblique fpherical triangles, excepting the two formerly mentioned. 2. A fundamental theorem by which the fegments of the bafe, formed by a perpendicular drawn from the rectical angle, may be found, the three fides being given. This, with the foregoing and the property of the fupplemental triangle, ferves for the folution of all the cafes of fpherical triangles. 3. Two proportions for finding by one operation botb the extremes, the three middle of five contiguous parts of a filherical triangle being given.

Tiese theorems are announced by Napicr in terms to the following import:

1. Of the circular parts of a rectangular or quadrantal fpherical triangle. The rectangle under the radius and the fine of the middle part is equal so the rectangle under the tangents of the adjacent parts and to the rectangle under the cofines of the oppofite parts. The right angle or quadrant fide being neglected, the two fides and the complements of the other three natural parts are called the circular parts; as they follow each other as

[^20]it were in a circular order. Of thefe any one being fixed upon as the middle part, thofe next to it are the adjacent, and thofe fartheft from it, the oppofite parts.
2. The rectungle under the tangents of balf the fum and balf the difference of the fegments formed at the bafe by a perpendicular drasen to it from the veritiall angle of aily fplocrical triangle, is equal to the rectangle inller the tangents of bulf the fuin and balf the difference of the tivo fudes.
3. The fines of balf the funn and balf the difference of the angles at the bafe of any Jpherical triangle are proportional to the tangents of the balf bafe and balf the difference of the fides.
4. The cofnes of balf the fum and balf the difference of the angles of the bule of any fplocrical triangle, are proportional to the tangents of balf the bafe and bolf the fuin of the fides.

Napier gives alfo the tro following theorems for finding an angle, the three fides of any fpherical triangle being given.
5. The reitingle under the fincs of the two fules is to the reatangle under the fines of bulf the fum and bulf the differcuce of the bafe and the difference of the two futes, as the fquare of the radius is to the fouare of the fine of laylf the ecrtial angle:
6. The refingle uader the fines of the treo flates is to the rectangle undith inc fores of balf the fum and balf differcrice of the fumin of the two futes and the bofs, as the fquare of the radius is to the fruare of the cofine of the ererticul wingle.

> C c

Fon

FOR the demonftration of the valious cafes of the firft of thefe fix propofitions, he refers to the clementary books on trigonometry then in ufe. This propofition is not fo fufceptible of a dircet demonflation. The demonftration perhaps the nearef to a direct one is given in the appendix ; of which demonftration the hint is taken from Napier.

His demonftration of the fecond propofition is extremely clegant and of an uncommon calt. The reader on thefe accounts, it is prefumed, will be very glad to fee the fubftance of it; which is as follows:

Let a plane MiN (Fig. XIII.) touch the fihere ADP at the point A, the extremity of its diameter PA. Upon the furface of the filhere lee there be defcribed the triangle $A \lambda \gamma$ acute in $\%$ or $A \lambda 6$ obtufe in b. Let the fine $A \gamma$. and the bafe A_{γ} or A_{6} be produced to the point P. With the pole λ and diftance λy or its equal $\lambda 6$ let the fmall circle of the fphere $b_{\text {ges }}$ interfecting $\lambda \mathrm{P}$ in ε and $\lambda \mathrm{A}$ in δ be defcribed: and from λ let the arc λ, μ be drawn perpendicular to $A b_{\gamma}$. A_{γ} is the fum of the fegments of the bafe and A_{0} their difference. A_{ε} is the fum of the fides and A s their difference. Let there be fuppofed a luminous point in P: The fhadows, A, b, and c, of the points A, b and $\%$, upon the plane MN , are in the fame fraight line, becaufe the points A, b, y and P are in the fame circular plane: alfo the fhadow A, d and c, of A, sand ε, upon the plane MN, are in the fame firaight line, becaufe A, δ, ε and P are in the fame circular plane. Since $P A$ is perpendicular to the plane MN , the plane triangles PAc, PAb, PAc and PAd are rectangular in A : therefore, to the radius $P A$, the ftraight lines $A c, A b$, Ae and $A d$, are the tangents of the angles $A P c$ or $A P \gamma, A P b$ or $A P b$,

APe or Ape and APd or APs refpectively. But thefe angles, being at the circumference of the fphere, have for their meafures the halves of the arcs intercepred by their fides: therefore $A c, A b, A e$ and Ad are the tangents of the halves of $A_{\%}, A_{0}, A_{:}$and A_{s} refpectively. Now (by optics) the fhadow of any circle, defcribed on the furface of the fphere, produced by rays from a luminous point fituated in any point of that furface excepting the circumference of the circle, forms a circle on the plane perpendicular to the diameter at whofe extremity the luminous point is placed: therefore the points c, b, c and d are in the circumference of a circle: therefore $A c \times A b=A c \times A d$. Q. E. D.

The thind and fourth propofitions are not demonflated by Napier. He probably deduced them from the fecond in a manner fimilar to that in the appendix; where the reader will find all of thefe and fome other theorems of the fame kind, demonitrated. Napier had left the third propofition under a clumfy form. It was put into the form above given by Briggs in his Lucubrationes annexed to the Canonis Mirifici Confertaio. This circumftance is not the fule mark of this work being a pofthumous publication.

Ture fifth propofition is deduced by Napier from the theorm of Regiomontanus, and it is likely he derived the fixth from the fame fource. To thefe two theorems the lugarithms are muth more applicable than to that of Regiomontanus.

Since Napier's time the chicf improvement made in the theory of aigonometry is the application of the calculus of Aluxions to ir ; for which we are inciebted to Cotes.
M. Pinane, in the Mensires de matbemetigue et de pbyfique for the year T756, reduces the folution of all the cales of fuherical triangles to four ambories. Thefe four analogies are in fact, under another form, Napier's Rule of the circular pats and his fecond or fundamental theorem, with its application to the fupplemental triangle. Although it would be no difficult matter to get by heart the four analogies of M. Pingre, yet there are few blenc! with a memory canable of retaining them for any confoderable time. For this rewton, the rule for the circular parts, ought to be kept. under its prefent form. If the reader attends to the circumfance of the fecond letters of the words tangents and crfines being the fame witla the firft of the words adjuceat and oppgfite, he will find it almof impoflible to forget the rille. And the rule for the folution of the two cafes of fipherical triangles, for which the former of itfelf is infuficient, may be thus exprefled: Of the circular parts of an oblique $\sqrt{3}^{3}$,uctical triangle, the recturgle muder the tangents of balf the fum and balf the difference of the fegments at the middle part (formed by a perpendicular drawn from an angle to the oppofite fide), is equal to the rectangle ander the taigents of balf the fum and balf the difference of the oppofite parts. By the circular parts of an oblique \oint_{p} herical triangle are meant its three fides and the fuppliments of its three angles. Any of thefe fix being affumed as a middle part, the oppofite parts are thofe two of the fame denomination with it, that is, if the middle part is one of the fides, the oppofite parts are the other two, and, if the middle part is the fupplement of one of the angles, the oppofite parts are the fupplement of the other two. Since every plane triangle may be confidered as defcribed on the furface of a fphere of an infinite radius, thefe two rules may be applied to plane triangles, provided the middle part be veftricted to a lide.

Thus

I NVENTIONS or NAPIER: 103

Thus it appears that two fimple rules fuffice for the folution of all the poffible cafes of plane and fpherical triangles. Thefe rules, from their neatnefs and the manner in which they are expreffed, cannot fail of engraving themfelves cleeply on the memory of every one who is a little verfed in trigonometry. It is a circumftance worthy of notice that a perfon of a very weak memory may carry the whole art of trigonometry in his head.

A P P I N．D I X．

I．

ANALYTICAL THEORY゙ OF THE LOGARITIMS．

I．LET the confecutive terms of an infinite geometrical procreffors differ infinitcly little one from another；it is evident that，any deru－ mined quantity c greater than unity being the bafis of the progreftion， there will be fome term $c^{*}=m$ any given quantity．

2．Tue cxponents of the terms of that progreffion are taid to be the logarithms of thofe terms：Thus the fymbol L denoting the lngurithm
 then $L m=x$ and $L \frac{1}{n}=-x=-L m$ ．

TIIEOREM I．

3．The logaritbme of a frotuat is cqual to the frum of the las uitions if its fucters．For fince $L c^{r}=x$ and $L c=\approx(2)$ ，it follows that $I . c+1 . c^{\circ} \cdots$

4. Thb logaritlm of a power is equal to the product of its exponent by the \log gritithm of its root. For, fince $\mathrm{L} c^{r}=x$, it follows that $u \mathrm{~L} c^{r}=u x$; but $n=\mathrm{L} c^{n * x}(2)$, therefore $\mathrm{L} c^{n x}=n \mathrm{~L} c^{x}$. Hence if $c^{x}=m$, then $\mathrm{L} m m^{n}=n \mathrm{~L} m$.

PROBLERI I.

5. To exdibit the logarithon of a given mumber. Since $c^{\circ}=\mathrm{r}$, if d is an infinitely fmall quantity and μ any finite quantity, it is evident that $c^{d}=\mathrm{I}+\frac{d}{\mu}$. Now $\mathrm{L} c^{d}=d(2)$, therefore $d=\mathrm{L}\left(\mathrm{I}+\frac{d}{\mu}\right)$, therefore $i a^{\prime}=i \mathrm{~L}(\mathrm{I}+$ $\left.\frac{d}{\mu}\right)=\mathrm{L}\left(\mathrm{I}+\frac{d}{\mu}\right)^{i}(4) . \quad \operatorname{Let}\left(\mathrm{I}+\frac{d}{\mu}\right)^{i}=\mathrm{I}+a$; we have $i d=i \mu(\mathrm{I}+a)^{t}-i \mu$: therefore, developing the furd quantity $\left(I+\frac{1}{\mu}\right) i$, making $i=00$, and reducing

$$
\mathrm{L}(\mathrm{I}+a)=\mu\left(a-\frac{a^{2}}{2}+\frac{a^{3}}{3}-\& \mathrm{c}\right)-\quad-\quad-\quad-\quad \mathrm{X}
$$

Hence, if a is negative,

$$
\mathrm{L}(\mathrm{I}-a)=-\mu\left(a+\frac{a^{2}}{2}+\frac{a^{3}}{3}+\& \mathrm{c}\right)-\cdots-\quad-\quad \mathrm{Y}
$$

Hence, by fubtracting Y from X

$$
\mathrm{L}(\mathrm{I}+a)-\mathrm{L}(\mathrm{I}-a)=\mathrm{L}\left(\frac{\mathrm{I}+a}{1-a}\right)=2 \mu\left(a+\frac{a^{3}}{5}+\frac{a^{5}}{5}+\& \mathrm{c}\right)-\quad-\mathrm{Z}
$$

6. The above formulx are of no ufe for the calculation of the logarithms if a is fuppofed an integer. Let therefore m and u be any pofitive numbers, in being greater than n; and
 the formulx X, Y, and Z become, by fubftitution, A, B, and C .

$$
\mathrm{L}\left(\frac{m+n}{n}\right)=\mathrm{L}(m+n)-\mathrm{L} m=\mu\left(\frac{n}{m}-\frac{n^{2}}{2 m^{2}}+\frac{n^{3}}{3^{3} m^{3}}-\& \mathrm{c}\right) \quad-\mathrm{A}
$$

$$
\begin{aligned}
& \text { A P P E N D I X. } \\
& \mathrm{L}\left(\frac{m-n}{m}\right)=\mathrm{L}\left(n_{i}-n\right)-\mathrm{L} m=-\mu\left(\frac{n}{m^{n}}+\frac{n^{2}}{n^{2}}+\frac{n^{3}}{3 n^{3}}+\mathbb{S} \mathrm{c}\right)-\quad-13 \\
& \mathrm{~L}\left(\frac{m+n}{n-n}\right)=\mathrm{L}(n+n)-\mathrm{L}(m-n)=2 \mu\left(\frac{n}{m}+\frac{n^{2}}{3 m^{3}}+\frac{n^{5}}{5^{m}}+\mathrm{i}+\mathrm{C}\right)-\mathrm{C}
\end{aligned}
$$

2do. Let $a=\frac{*}{m+n}$; then $1-a=\frac{m}{m+n}$, and the formula X . becomes D

$$
\mathrm{L}\left(\frac{m}{m+n}\right)=\mathrm{L} m-\mathrm{L}(m+n)=-\mu\left(\frac{n}{m+n}=\frac{n^{2}}{2\left(m+\mathrm{T},,^{4}\right.}+\frac{n^{3}}{3\left(+n^{3}\right.}+\delta \mathrm{c}\right) \mathrm{D}
$$

3tio. Let $a=\frac{m}{m+i}$; then $\mathrm{I}-a=\frac{n}{m+n}$, and the formula Y becomes E

$$
\mathrm{L}\left(\frac{m}{m+n}\right)=\mathrm{L} n-\mathrm{L}(m+n)=-\mu\left(\frac{m}{m+4}+\frac{m^{2}}{2(m+1)^{2}}+\frac{m^{3}}{3\left(m \zeta^{3}\right)^{3}}+\& \mathrm{c}\right)-\mathrm{E}
$$

4to. Let $a=\frac{n}{2 m+n}$; then $\frac{1+a}{1-a}=\frac{m+n}{n}$, and the formula Z becomes F

$$
\mathrm{L} \frac{m+n}{m}=\mathrm{L}(m+n)-\mathrm{L} m=2 \mu\left(\frac{n}{2 m+n}+\frac{n^{3}}{3(2 m+n)^{3}}+\frac{n \xi}{s\left(m^{m}+n\right)^{5}}+\& \mathrm{c}\right) \quad \mathrm{F}
$$

jto. Let $a=\frac{n}{2 m-n}$; then ${ }_{1-a}^{I+a}=\frac{m}{m-n}$, and the formula Z becomes G

$$
\mathrm{L}\left(\frac{m}{m-m}\right)=\mathrm{L} m-\mathrm{L}(m-n)=2 \mu\left(\frac{n}{2 m-n}+\frac{n}{3, n-1)^{3}}++_{5 \sqrt{2} \frac{n^{5}}{m-n)^{3}}}^{3}+\& \mathrm{c}\right) \mathrm{G}
$$

Goo. Let $a=\frac{m-n}{m+n}$; then $\frac{1+m}{1-a}=\frac{m}{n}$ and the formula Z becomes H

$$
\mathrm{L}_{\frac{m}{n}}=\mathrm{L} m-\mathrm{L} n=2 \mu\left(\left(\frac{n-m}{m+n}\right)+1\left(\frac{m-n}{m+n}\right)^{3}++_{3}^{3}\left(\frac{n-n}{n+}\right)^{5}+\delta \cdot \mathrm{c}\right)-\mathrm{II}
$$

Fimo. Let $\frac{n^{2}}{\sigma^{2}}$ be fubftituted for $\frac{n}{n}$ in the formula B : Iet this new formula be divided by c; and Let $\mathrm{L}\left(m^{2}-n^{2}\right)$ or $\left.\mathrm{L}(m+n)+\mathrm{L}\right) m-n=\sigma$ and $\mathrm{L}(n+i n) \mathrm{L}(m=-n) s:$ then flatl

REMARKOS

7. O1 threc quantities $m-n, m$ and $m+n$, in arithmetical procreflion, the logarithm of the fecond, being given the logarithms of the other two may be found by one operation, if the odd and even powers of \therefore in the dericios A and 13 are calculated apart.
8. If n is fuppofed equal to unity, and if μ (the modulus of the fyften of logarithms to be afterwards determined), confifts of a great number of figures, it will be much more convenient, in calculating by the feriefes A, B, C, D, F, and G, to confider μ, as the numerator of each term than as the multiplier of the fum of the terms.
9. 'Tie firft ftep $\frac{2 \mu n}{2 m X^{n}}$ of the feries F will give the logarithms of all numbers greater than 20000 truc to fifteen places, if thofe of all numbers lefs than 20000 are given, and if $2 \mu n$ does not exceed a few units.
10. The firft ftep $\frac{\sigma}{8}+\frac{\delta n}{4 m}$ of the feries 1 will give the logarithms of all numbers greater than 10000 true to nineteen places, if thofe of all numbers lefs than 10000 are given, and if n does not excced a few units.

Tire reader will cafily fee that the logarithm of all numbers below m being known, that of $\frac{m+n}{2}$ and confequently that of $m+n$ and therefore σ as well as δ will be known.
II. Various methods might be taken to compute with eafe the logarithms of the lower prime numbers. The logarithms, for example, of about two thirds of the primes under 100 may be obtained with litthe trouble from a table of the continual halfs of the modulus, n being $=1$. The infpection of the following table will make this evident.

12. The value of $L(1+2)$ was firf given by Nicolas Mercator, who deduced it from a property of the equilateral hyperbola*. The feries c was furf demonftrated by James Gregoryt. A feries fome what lefs gencral than i wass produced by John Keilloin his treatife de Natura and aritbmetica logaritb;iorum: but I think I have fome where feen it attributed to Newton. Some of the other formulx I believe are new.

PROBLEM II.

13. To exbibit the modulus of a fyum of I-garithms. This is effected by fublituting c for m, and 1 for n, in the equation II. Its value is a follows:

$$
\mu=\frac{1}{2\left(\frac{c-1}{6+1}\right)++_{1}^{\prime}\left(\frac{1-1}{1+1}\right)^{3}+{ }^{\prime \prime}(-1-1)}+\hat{7}+.
$$

* Lorarithmotechnia. + Exer. Geom.

REMARKS.

14. Ir our common fyftem of logarithms, c is cqual to 10 ; which gives the following values of μ and its reciprocal to thirty decimal places.

$$
\begin{aligned}
& \mu=0.434294481903251827651128918917 \\
& \frac{1}{\mu}=2.302585092994045684016991454684
\end{aligned}
$$

15. Tine modulus of Napier's fyftem is unity: for he fuppofed the logarithm of a number difiering from unity by a very fmall quantity d to be equal to the fum or difference of a and d : Fence if ' L denote the common, or Brigg's, logarithm, and 'L, Napier's logarithm of the fame number; then

$$
{ }^{c} \mathrm{I}=(0.43429 \mathrm{Eic})^{\circ} \mathrm{L} ; \text { and }{ }^{\circ} \mathrm{L}=(2.30258 \& \mathrm{c})^{6} \mathrm{~L}
$$

PROBLLM. III.

I6. To exibib the numler of a siven Io garitiom. We have feen that d being $=\frac{1}{\omega}$ and μ a funite quantity, that $c^{\prime \prime}=1+\frac{d}{\mu},(5)$: we have
therefore $c^{x}=\left(1+\frac{d}{\mu}\right)^{x}$, and confequently

$$
c^{x}=1+\frac{x}{m}+\frac{r^{2}}{1 \cdot 2 x^{2}}+\frac{x^{3}}{1, \therefore \cdot 5 \cdot c^{3}}+\& C-\cdots
$$

and if x is negative,

$$
c^{-x}=1-\frac{x}{\mu}+\frac{x^{2}}{1,2 x^{2}}-\frac{v^{3}}{1, \pi, 3, w^{x}}+\delta c-\cdots
$$

Hence, by dividing I by Ψ,

17. If x is greater than μ, the above fericfes converge fo flowly that that they are of no ufe for finding the number correfponding to a si-
given logarithm. Let therefore m and n be two numbers difiering littic from cach other, m being greater than n, and
1 mo. Let $x=\mathrm{L}\left(\frac{m}{n}\right)=\mathrm{L} m-\mathrm{L} n=s$. Then $c^{x}=\frac{m}{n}$ and $c^{-x}=\frac{\pi}{n}$ and the equations Φ and Ψ give

$$
\begin{aligned}
& n=m\left(1-\frac{s}{\kappa}+\frac{\delta^{2}}{1,2 \mu^{2}}-\frac{\delta^{3}}{1,2, \alpha^{2}}+\& c\right) \quad-\quad-\quad-N
\end{aligned}
$$

2do. I.ee $:=\mathrm{L}\left(\frac{m}{m}\right)^{\frac{1}{2}}=\frac{1}{\mathrm{~L}} \mathrm{~L}\left(\frac{m}{n}\right)=\frac{1}{5} \mathrm{~L} m-\frac{1}{2} \mathrm{~L} n=\mathrm{t}:$ then $c^{2 x}=\frac{m}{n}$ and the equation Ω gives

I S. More generally, let there be any number n of numbers $n^{\prime}\left\ulcorner m^{\prime \prime}\right.$ $\left\ulcorner m^{\prime \prime \prime}>m^{\prime \prime \prime \prime}>\cdots \cdots\left\ulcorner m^{\prime \prime}\right.\right.$ which, taken confecutively, differ litele from each

$\pm \rho^{|r-2|}=\Delta^{|n|}$ (the quantities $|p|,|p-1|,|n|, n-1 \mid$ \&c. inclofed in lines, expreffing fimply fome terms of the feries $1,2,3,4,5 \&<c$): we have

REMARKS.

19. If the logarithms of the firft 20000 natural numbers are given, the two firt fteps of the ferics $n\left(1+\frac{1}{\mu}+\frac{\delta^{2}}{1.2 \mu^{2}}\right)$ of the ferics M , or $n\left(1-\frac{1}{\mu}\right.$
 the number m or $: 2$ true to about the fourteenth decimal place.
if
=c. The feriefes M and N were furf given by Halley, in the PhilofoI hical tranfactions for the year 1695 . He exhibited alfo a feries the fanc with Γ, but under an inclegant form; probably owing to his hav-- ing decluced it from the actual divifion of M by N.
PROBLEM IV.
20. To exbibit the number whofe logaritbon is equal to the modulus. This is effected by the fubfitution of μ for x in the formula Φ. It's value is as follows

$$
c^{\mu}=1+\frac{1}{1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\& c
$$

or taking the fum of thirty fractional terms

$$
c^{\prime \prime}=2.71828 \quad 1828+59045 \quad 235360287471353
$$

II．

A TABLE of N゙APIER＇s LOGARITHMS，

QF AIL TIE N゙ATUR．II，NUMBERS FROME I TO IOI TO TWENTY SEVLN PLACES．

Num． 1 Ingarithms．	Nun．	Logirithms．
1 10．0cc00．00000．00000．00500．00000．0	21	$3.04+52 \cdot 24.377 \cdot 23422 \cdot 09050.05951 .8$
$20.69314 .71505 .59245 .359+1.72321 .3$	22	$3.09104 \cdot 2+533 \cdot 58315.853+7 \cdot 31757.0$
	23	$3.135+.12150 .291+1.6 y 08 \mathrm{C} .67528 .3$
	$2+$	
$51.60943 \cdot-912 \pm .3+16 . .3: 40.07593 \cdot 3$	25	$3.21887 .502+$ ¢．と2．0．it920．15186．7
	26	$3.2 ; 809.6: 380.21+52.0454-.01-95.6$
	27	$3 \cdot 29583.68662 .04329 .274 \leq 5.357 .1$
	28	$3 \cdot 33222 \cdot+5101 \cdot 752=3 \cdot 92393 \cdot 9,3169.8$
9 2．11：22．45：－－36219．382，1．04＝＋8	29	$3 \cdot 30729 \cdot 58299 \cdot 40+7+\cdot 2718 \cdot 32=2$
$10 \mid 2 \cdot 3=25.50229 \cdot 340+5.58+01.7991+.6$	50	$3 \cdot+6: 19 \cdot 73$（160．62135．3754t $32300 \cdot)$
$11 \mid 2.3-89.52720 .283-2.5 \div 50.19+35.9$	31	$3 \cdot 433,9 \cdot 72444 \cdot 5,446 \cdot 2+592 \cdot 31643 \cdot 3$
	32	$3 \cdot 4 \cdot 73 \cdot 59025 \cdot 9,-26.5+303.51$ co5．
	33	$3 \cdot+9(5)=.7501+.60+中^{\prime} 0.23545 \cdot-1: 8 .$
	$3+$	
	35	$\left.3 \cdot 5533+0^{2}-51+\cdot 8\right)+3 \cdot r-9.51122$
		$3 .-8351 . \because y: 8+5116 \text { - } 18: .195+7$
	$3{ }^{\circ}$	
	39	
	\pm	

Loc linthits.		Logarithms.		
		72 4.27656 .61190 .16055 .31104 .21868 .1 73 $4.29045 .9+411.48391 .12929 .21088 .5$ 74 4.36406 .50 .132 .04169 .7537 .53278 .2 75 4.31748 .31135 .36310 .44059 .67659 .1		
		76 $4.33073 \cdot 334=2.86331 .07884 .3 \div 916.3$ 77 4.3438 .5428 .53683 .84916 .72953 .2 78 $4.3567 . .88265 .39591 .73086 .59648 .0$ 79 4.31944 .78524 .67621 .49417 .29455 .4 80 $4.38202 .663+6.73831 .61220 .968 .5 .2$		
		86 $4.45+34.72962 .53507 .73289 .00745 .4$ 87 $4 \cdot 46590.81186 .5+583.71857 .85172 .7$ 88 4.47733 .68144 .78206 .47231 .36399 .4 89 4.48863 .63697 .32139 .83831 .78155 .4 90 $4.49980 .7670: 30: 55.26690 .3_{4} 919 \cdot 3$		
56 4.02535 .16907 .35149 .23335 .70491 .1 57 4.04305 .12675 .34350 .15140 .42726 .7 58 $4.066+4.30105 .46419 .33660 .05041 .6$ 59 $4.07753 .7+439.05719 .45061 .60503 .8$ 60 $4.09+34.4562 .22100 .68483 .04688 .1$				
		$21 \mid+.51055 .95065 .168 ; 0.04115 .88401 .9$		
		52	$4.521-8.95770 .49040 .30964 .12170 .7$	
			$4 \cdot 53259.94931 .53255 \cdot .3732 .44095 .6$	
		$\begin{aligned} & 4.5+329.47822 .76003 .89623 .81827 .9 \\ & 4.533^{8} 7.68916 .00540 .83460 .9 .567 .7 \end{aligned}$		
		$96 \mid 4.56434 .81914 .678_{3} 6.23848 .14058 .4$		
66			97	$4.57471 .09-85.03332 .8211 .67216 .2$
67		4.58496 .74786 .70571 .91962 .79376 .1		
6		29100	4.59511 .98501 .34589 .92685 .24340 .5 4.60517 .01859 .88091 .36803 .59829 .1	
69	$4.23+10.650+5 \cdot 97259 \cdot 38220.19980 .7$			
		$14.01512 .05168 \cdot 41259.45058 .41982 .7$		

III.

TRIGONOMETRICAL THEOREMS.

(i) Lemma. I . The product of the radius by the difference of the verfed fines of two ares is equal to twice the product of the fines of half the fum and half the difference of thofe arcs.
$\mathrm{R}(\operatorname{fin} \mathrm{V}, a-\operatorname{lin} \mathrm{V}, b)=2 \operatorname{fin} \frac{a+k}{2} \times \operatorname{fin}_{2}^{a-b}$.
(2) Corollary. The product of the radius by the verfed fine of an are is equal to twice the fquare of the fine of half that arc. R fin $\mathrm{V}, a=2 \operatorname{fin}^{2}{ }_{\frac{1}{2}} a$.
(3) Lem. 2. The fum of the cofines of two arcs is to their difference as the cotangent of half the fum of thofe arcs is to the tangent of half their difference.

Cof $a+\operatorname{cof} b: \operatorname{cof} a-\operatorname{cof} b:: \cot \frac{b+a}{2}: \tan \frac{k-2}{2}$.
(4) Lem. 3. The fum of the fines of two arcs is to their difference as the tangent of half the fum of thofe arcs is to the tangent of half their their difference.
$\operatorname{Sin} a+\operatorname{fin} b: \operatorname{fin} a-\operatorname{fin} b:: \operatorname{tang} \frac{a+b}{2}: \operatorname{tang} \frac{a-b}{2}$.
(5) I.cm. 4. The fum of the cotangents of two ares is to their difference as the fine of the fum of thofe arcs is to the fine of their differenee
$\operatorname{Cot} a+\cot b: \cot a-\cot b:: \operatorname{fin}(b+a): \operatorname{fin}(b-a)$.

$$
\begin{equation*}
G_{\delta}^{5} \tag{б}
\end{equation*}
$$

(6) Le:22. 5. The product of the fine of the fum of two arcs and the tungent of half that fum, is to the product of the fine of their difference and the tangent of half that difference, as the fquare of the fine of half their fum is to the fquare of the fine of half their difference.
$\operatorname{Sin}(a+b) \times \operatorname{tang}^{\frac{a+b}{2}}:$ fin $(a-b) \times \operatorname{tang}^{\frac{a+3}{2}}:: \operatorname{fin}^{2} \frac{a+b}{2}: \operatorname{fin}^{2} \frac{a \times b}{2}$.
(7) Lem. 6 . The product of the fine of the fum of two arcs and the tangent of half their difference, is to the product of the fine of their difference and the tangent of half their fum, as the fquare of the cofine of half their fum is to the fquare of the cofine of half their difference.
$\operatorname{Sin}(a+b) \times \operatorname{tang} \frac{a-b}{-2}: \operatorname{fin}(a-b) \times \operatorname{tang} \frac{a+3}{2}:: \operatorname{cof}^{2} \frac{a+b}{2}: \operatorname{cof}^{2} \frac{a-j}{2} \cdot$
(8) Lenn. 7 . In right angled fpherical triangles the cofine of the hypothenufe is to the cotangent of one of the oblique angles as the cotangent of the other is to the radius.
(9) Lem. 8. In right angled fpherical triangles the cofine of the hypothenufe is to the cofine of one of the fides as the cofine of the other is to the radius.
(Io) Lem. 9. In any fpherical triangle the product of the fines of the two fides is to the fquare of the radius as the difference of the verfed fines of the bafe and the difference of the two fides is to the verfed fine of the vertical angle, Fig. XIV.
$\sin A B \times$ fin $B C: R^{\prime}::$ fin $V, A C-\operatorname{fin} V,(A B-B C): f i n V, B *$
(1i) Lem. 10. In any fpherical triangle the product of the fines of the two fides is to the fquare of the radius, as the difference of the verfed fines of the fum of the two fides and the bafe is to the verfed fine of the fupplement of the vertical angle, Fig. XIV.
$\sin A B \times \operatorname{fin} B C: R^{2}:: \operatorname{fin} V,(A B+B C)-\operatorname{fin} V, A C: \operatorname{fin} V$, fup. B.

[^21](12) The natural parts of a triangle are its three fudes and its three angles.
(13) 'The circular parts of a rectangular (or quadrantal) fuhericai triangle are the two natural parts adjoining to the right angle (or qua(irant fide) and the cousplements of the other three.
(14) Any one of thete five being confidered as a midalle part, the two next to it are called the acijacent parts, and the other two the oppofite parts: Thus, in the triangle $d \perp B$ (rig. XV.) retangular in A, if the complemont of the angle d is taken as a middle part, the adjacent parts are the fide $d \mathrm{~A}$ and the complement of the hypothennfe $d b$; and the oppofite parts the fide, 6 A and the complement of the angle b.
(15) Oi five great circles of the fphere $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}$, and EA. (Fig. XV.) let the firft interfect the fecond; the fecond, the third; the third, the fourth ; the fourth, the fifth; and the fifth, the firlf; at right angles in the points B, C, D, E and A : there are formed, by the interfections mentioned and by thofe at the refpective poles a, b, c, d and e of thefe great circles, five rectangular triangles $d .16,6 \mathrm{D} e, e \mathrm{~B} ;, \mathrm{cE} a$ and a Cid: and, if thefe poles are joined by the quadrantal ares $a b, b c, c d$, de and $c a$, there are formed five quadrantal triangles $a d b, d b c, b c c, c c a$, and codt. The circular parts in all thefe triangles are the fime: the poffition of thefe equal circular parts with refpect to one another in each of thefi triangles is different: therefore
(16) What is true of the circular parts of a rectangular triangle is true of thofe of a quadrantal; and what is true of one middle part and its adjacent and oppofite parts is true of the other four middle parts and their adjacent and oppolite parts.
(Iヶ) The circular parts of an oblique fpherical triangle are its three fides and the Jupplements of its three angles.
(18) Any one of thefe fix being confidered as a middle part, the two next to it may be callecl the adjacent parts; the one facing it, the remote part ; and the other two, the oppolite parts: Thus, in the triangle ABC (Fig. XIV.), if the fide AC is taken as a middle part, the adjacent parts are the fupplements of the angles A and C; the oppofite parts, the fides AB and BC , and the remote part, the fupplement of the angle B .
(19) Of frx great circles of the fphere let the firft three, AB, BC, and C.A, interfect each other at the poles, B, C and A, of the fecond three, $c a, a b$ and $b c$: the interfections, c, a and b, of the latter are the poles of the former: there are formed two triangles $A B C$ and $a b c$ in which the circular parts are the fame; the pofition of thefe equal circular parts is different in both: therefore
(20) What is true of one middle part and its adjacent, oppofite, and remote parts, is true of any other middle part and its adjacent, oppofite, and remote parts.
(21) If an arc $b \mathrm{BD} d$ pafs through the vertices of thefe two triangles, it will be perpendicular to their bafes CDA and $c d a$, and the fegments at the bafe of the one triangle will be the complements of the fegments at the vertical angle of the other: that is $, \mathrm{CD}=90^{\circ}-d 6 a, \mathrm{AD}=90^{\circ}-$ $d b c, c d=90^{\circ}-\mathrm{ABD}, a d=90^{\circ}-\mathrm{DBC}$.
(22) If the radius of the fphere is fuppofed infinite, the fines and tangents of the fides of a triangle deferibed on its furface, become the fides themfelves of a plane triangle. Confequently all the formulx of fpherical trigonometry, where the fines and tangents only of the fides enter, are applicable to plane trigonometry. Thofe, however, in which any
functions of all the three angles and only one fune or tangent of ons fide cinter, muft be excepied.
(23) Of the circular parts we fhall denote the middle one by MI, the aljacent ones by A and a, and the oppolite ones by O and o. If the triangle is oblique, the remote part we fhall call m, and the fegments at a fide or angle (21) S and s.
(2_{4}) Theorem 1. Of the circular parts (I_{3}) of a rectangular (or quadrantal) fipherical triangle, the product of the radius and the fine of the middle part, the product of the tangents of the adjacent parts and the product of the cofines of the oppofite parts, are equal.
Demonfration. In the right angled fpherical triangle $d \mathrm{~A} b$ (Fig. XV.) we have cof $b d:$ cot. Abd $:: \cot \mathrm{A} d b: \mathrm{R}(8)$, and $\operatorname{cof} b d: \operatorname{cof} \mathrm{A} b:: \operatorname{cof} \mathrm{A} d:$ $\mathrm{R}(0)$; therefore $\mathrm{R} \times \operatorname{cof} b d=\cot \mathrm{A} b d \times \cot \mathrm{A} d b=\operatorname{cof} \mathrm{A} b \times \operatorname{cof} \mathrm{A} d$; therefore (16)
$\mathrm{R} \times$ fin $\mathrm{NI}=\operatorname{tang} \mathrm{A} \times \operatorname{tang} a=\operatorname{cof} \mathrm{O} \times \operatorname{cof} 0$.
(25) Corollary I. In any fpherical triangle, the fines of the fides are proportional to the fincs of the oppofite angles. For, in the right angled triangles ADB and CDB (Fig. XIII .), $\mathrm{R} \times$ fin $\mathrm{BD}=\mathrm{fin} \mathrm{AB} \times \mathrm{fm} \mathrm{A}$, and $R \times$ fin $13 D=$ fin $B C \times f$ in C; therefore fin $A B:$ fin $B C:: f$ fin $C: f i n A$
(26) Cor. 2. In any f_{p} herical triangle, the fines of the fegments of one of its fides (produced if neceffary) are proportional to the cotangent; of the angles at the extremities of that fide. For, in the right angled triangles ADB and $\mathrm{CDB}, \mathrm{R} \times$ fin $\mathrm{AD}=\cot \mathrm{A} \times$ tang BD and $\mathrm{R} \times$ fin DC $=\cot \mathrm{C} \times \operatorname{tang} \mathrm{BD}$; therefore $\operatorname{fin} \mathrm{AD}: \operatorname{fin} \mathrm{DC}:: \cot \mathrm{A}: \cot \mathrm{C}$
(27) Cor. 3. In any fipherical triangle, the cofines of any two fides are proportional to the cofines of the fegments of the third fide. For, in the right angled triangles $A D B$ and $C D B, R \times \operatorname{cof} A B=\operatorname{cof} A D \times \operatorname{cof}$

DB , and $\mathrm{R} \times \operatorname{cof} \mathrm{BC}=$ cof $\mathrm{CD} \times$ cof DB ; therefore cof $\mathrm{AB}: \operatorname{cof} \mathrm{BC}::$ cor AD : cof DC
(28) Remark 1. This theorem ferves for the folution of all ponible cafes of rectanglar or quadrantal fpherical triangles, and for the folution of all pofible cafes of oblique fpherical triangles (by means of the are drawn from one of its angles perpendicular on the oppofite fide); excepting when the three angles, or the three fides only, are the data.
(29) Rem. 2. This theorem, by confining the middle part to the two fides, (22) ferves alfo for the folution of all poffible cafes of rectangular plane triangles, and for the folution of all poffible cafes of oblique angled plane triangles (by means of the perpendicular drawn from an angle to to the oppofite fide); excepting when the three fides only are the data.
(30) Rem. 3. Were the complements of the two parts adjoining to the right angle or quadrant fide and the other three natural parts taken as the circular parts, the theorem would be,

$$
\mathrm{R} \times \operatorname{cof} \mathrm{M}=\cot \mathrm{A} \times \cot a=\operatorname{fin} \mathrm{O} \times \operatorname{fin} 0 .
$$

But the other is preferable, becaufe it is more cafily remembered. "The fecond letter of the word tangent is the fame with the firtt of adjacent. It is the fame of the words cofine and oppofite. If this is atterded to, it is hardly poflible to forget the enunciation of the theorem.
(31) Theorem 2. Of the circular parts (17) of an oblique fpherical triangle, the fquare of the fine of half the middle part, is to the fauare of the radius; as the product of the fines of half the fum and half the difference of the fum of the adjacent parts and the remore part, is to the product of the fines of the adjacent parts.

Dem. For fince (Fig. XIV.) fin V. fupp. $B: R^{2}::$ fin $V,(A B+B C)$-fin $V, A C:$ fin $A B \times$ fin $B C(I I)$, it follows that $f^{2} \frac{1}{2}$ fupp. $B: R^{2}::$ fin
$\left(\frac{\overline{A B+B C} \pm A C}{2}\right) \times$ fin $\left(\frac{\overline{A B+B C}}{2}-A C\right)$ fin $A B \times$ fin $B C(2$ and 1$) ;$ therefore (20)

(32) Theorem 3. Of the circular parts of an oblique fpherical triangle, The fquare of the cofine of half the middle part is to the fquare of the radius; as the product of the fines of half the fum and half the difference of the remote part and the difference of the adjacent parts, is to the product of the fines of the adjacent parts.

Dem. For fince fin $V B: R^{2}:$ fin $V, A C-f i n ~ V,(A B-B C):$ fin $A B$ tin $B C(10)$, it follows that $\operatorname{cof}^{2} \frac{1}{2}$ fupp. $B: R^{2}::$ fin $\frac{A C+\overline{A B-B C}}{2} \times$ fin $\left(\frac{A C-\overline{A D}-\bar{T}}{2}\right): A B \times \operatorname{fin} B C(2)$ and (1); therefore (20)

$$
\operatorname{Cof}^{2} \frac{1}{2} \mathrm{~N}: \mathrm{R}^{2}:: \operatorname{fin}\left(\frac{m+\bar{A}=a}{2}\right) \times \operatorname{fin}\left(\frac{m-\overline{A-0}}{=}\right): \text { fin } A \times \operatorname{fin} a .
$$

(33) Theorem 4. Of the circular parts of an oblique fpherical triangle, The fquare of the tangent of half the middle part is to the fquare of the radius; as the product of the fines of half the fum and half the difference of the fum of the adjacent parts and the remote part, is to the product of half the fum and half the diference of the remote part and the difference of the adjacent parts.

That is (by comparing the two preceding theorems)

$$
\operatorname{Tang}^{2} \mathrm{M}: \mathrm{R}^{2}:: \operatorname{fin}\left(\frac{\overline{\mu+n}+m}{2}\right) \times \operatorname{fin}\left(\frac{\overline{4-a}-n}{2}\right): \operatorname{fin}\left(\frac{m+\overline{1-1}}{2}\right) \times \operatorname{fin}\left(\frac{m-\overline{1-2}}{2}\right)
$$

(34) Theorem 5. Of the circular parts of an oblique fpherical triangic, The product of the tangents of half the fum and half the difference of the fegments of the middle part is equal to the product of the tanircnts of half the fum and half the difference of the oppofite parts.

Dem. For fince cof $\mathrm{BA}: \operatorname{cof} \mathrm{BC}:: \operatorname{cof} \mathrm{DA}: \operatorname{cof} \mathrm{DC}(27)$ it follows that $\operatorname{cof} \mathrm{BA}+\cos \mathrm{BC}: \operatorname{cof} \mathrm{BA}-\cos \mathrm{B} \mathrm{C}:: \cos \mathrm{DA}+\operatorname{cor} \mathrm{DC}: \operatorname{cor} \mathrm{DA}-$ col

122

 therctore (20 and 21)

$$
\text { Tang }\binom{5+}{2} \times \operatorname{tang}\binom{s-3}{2}=\operatorname{tang}\left(\frac{0+5}{2}\right) \times \operatorname{tang}\left(\frac{0-0}{-1}\right)
$$

(35) Rem. 4. By any of the theorems 2 , 3, or 4 , being given the three fides or three angles of a fipherical triangle, may be found any of its angles or fides; and, confining the middle part to the fupplement of an angle, being given the three fides of a plane triangle, may be found (22)
(36) Rem. 5. By theo:em 5, being given the three fides or three angles of a fpherical triangle, the fegment of any of its fides or angles may be found; and confining the middle part to a fide, being given the three fides of a plane triangle, the fegments of any of its fides may be found.
(37) Rem. 6 . By the firft theorem, and any one of the other four, may be folved all the poffible cafes of fyherical and plane triangles. Of thefe four, the laft is the molt elegant and the moft eafily remembered.
(38) Theorem 6. Of the circular parts of an oblique fpherical triangle, the tangents of half the fum and half the difference of the fegments of the middle part are proportional to the fines of the fum and the difference of the adjacent parts.

Dem. For fince fin CD: fin DA: $: \cot \mathrm{C}: \cot \mathrm{A}(26)$, it follows that $\operatorname{fin} C D+\operatorname{fin} D A: \operatorname{fin} C D-\operatorname{fin} D A:: \cot C+\cot A: \cot C-\cot A$; therefore tang $\left(\frac{C D+D A}{2}\right): \operatorname{tang}\left(\frac{C D-D A}{2}\right):: \operatorname{fin}(A+C):$ fin $(A-C) ;$ thercfore (20 and 21)
$\operatorname{Tan}\left(\frac{s+1}{3}\right): \operatorname{tang}\left(\frac{s-3}{2}\right):: \operatorname{fin}(A+a): \operatorname{fin}(A-a)$
(39) Rem. 7. By this theorem, being given two fides and the included angle, or two angles and the included fide of any triangle, the fegments of the angle or fide may be funnd.
(40) Theorem 7. Of the circular parts of an oblinue fiherical triangle, The tangents of half the fum and half the difference of the adjacent parts are proportional to the tangents of half the fim and half the difference of the oppofite parts.

Dem. For fince fin $B C$: fin $B A:$ fin $A:$ fin $C(25)$, it follows that fin $B C+\operatorname{fin} B A:$ fin $B C-f i n B A::$ fin $A+f i n C:$ fin $A-f i n C$, therefore (4) $\operatorname{tang}\left(\frac{B C+B A}{2}\right): \operatorname{tang}\left(\frac{B C-B, A}{2}\right):: \operatorname{tang}\left(\frac{1+C}{2}\right): \operatorname{tang}\left(\frac{1-C}{2}\right):$ therefore (20)
$\operatorname{Tang}\left(\frac{1+1}{2}\right): \operatorname{tang}\left(\frac{1-1}{2}\right):: \operatorname{tang}\left(\frac{0+1}{2}\right): \operatorname{tang}\left(\frac{0-0}{2}\right)$.
(41) Rem. 8. By this theorem, being given two fides and the includ. ed angle of a plane triangle (22), the other angles may be found.
(42) Theorem S. Of the circular parts of any fpherical sriangle, The tangents of half the micidle part and half the difference of the oppofite parts are proportional to the fincs of half the fum and laalf the difference of the adjacent parts.

Dem. For fince tang $\left.\left(\frac{5+1}{2}\right) \times \operatorname{tang} \frac{s-s}{2}\right)=\operatorname{tang}\left(\frac{+0}{2}\right) \times \operatorname{tang}\left(\frac{1-1}{2}\right),(34)$; and tang $\left(\frac{s+f}{2}\right): \operatorname{tang}\left(\frac{s-}{2}\right)::$ fin $(A+a):$ fin $(A-a),(38) ;$ and tang $\frac{a+0}{2}: \operatorname{tang} \frac{0-0}{2}:: \operatorname{tang}\left(\frac{1+a}{2}\right): \operatorname{tang}\left(\frac{1-a}{2}\right),(+0)$ it follows.that tang ${ }^{2}\left(\frac{s+i}{2}\right)$: $\operatorname{tang}^{2}\left(\frac{0-0}{2}\right):: \operatorname{fin}(A+a) \times \operatorname{tang} \frac{A+1}{2}:$ fin $(A-a) \times \operatorname{tang}\left(-\frac{1-a}{2}\right)$; therefore (6)

Tang ${ }_{2}^{1} \mathrm{M}: \operatorname{tang}\left(\frac{0-0}{2}\right):: \operatorname{fin}\left(\frac{1+a}{2}\right): \operatorname{fin}\left(\frac{1-1}{2}\right)$,
(+i) Theorem 9 . Of the circular parts of an oblique fpherical triangle, The tangents of half the middle part and half the fum of the oppofite parts are proportional to the cofines of half the fum and half the difference of the adjacent parts.

Dem. For fincetang $\left(\frac{s+s}{2}\right) \times \operatorname{tang}\left(\frac{s-s}{2}\right)=\operatorname{tang}\left(\frac{0+0}{2}\right) \times \operatorname{tang}\left(\frac{0-0}{2}\right),(34) ;$ and $\operatorname{tang}\left(\frac{s+s}{2}\right): \operatorname{tang}\left(\frac{s-s}{i}\right)::$ fin $(A+a): \operatorname{fin}(A-a),(38)$; and tang $\frac{0-0}{2}: \operatorname{tang} \frac{0+0}{2}:: \operatorname{tang} \frac{1-a}{2}: \operatorname{tang} \frac{A+2}{2}(40)$; it follows, that $\operatorname{tang}^{2} \frac{S+s}{2}$ $\operatorname{tang}^{2} \frac{0+0}{2}::$ fin $(A+a) \operatorname{tang} \frac{A-a}{2}: \operatorname{fin}(A-a) \operatorname{tang}\left(\frac{A+a}{2}\right):$ therefore (7) Tang $£ \mathrm{M}: \operatorname{tang} \frac{0+0}{2}:: \cos \frac{A+a}{2}: \operatorname{cof} \frac{A-a}{2}$.
(44) Rem. 9. From thefe two theorems it is evident, that, being giren two angles and the included fide, or two fides and the included angles of any fpherical triangle, the other two fides, or the other two angles may be found; and being given two angles and the included fide of any plane triangle, the other two fides may be found by two analogies only.

From thefe propofitions are deduced the following

TRIGONOMETRICALFORMULR.

(45) In any fpherical triangle ABC , Fig. XIV. we have $\operatorname{Sin} A B \times \operatorname{fin} B C: R^{2}::$ fin $\frac{A C+\overline{A B-B C}}{2} \times \operatorname{fin} \frac{A C-\overline{A B-B C}}{2}: \operatorname{fin}^{2}=1(32)$ $\sin \mathrm{AB} \times \operatorname{fin} \mathrm{BC}: \mathrm{R}^{2}:: \operatorname{fin} \frac{\overline{A B+B C}+A C}{2} \times \operatorname{fin} \frac{A \overline{B+B C}-A C}{2}: \operatorname{cof}^{2} \frac{1}{2} \mathrm{~B},(31)$ $\sin \frac{A \overline{B+B C}+A C}{2} \times$ fin $\overline{A B+B} C-A C: \mathrm{R}^{2}::$ fin $A C+\overline{A B-B C} \times$ fin $A C-\frac{A B-B C}{2}: \operatorname{tang}^{2}=\mathrm{B}(33)$
$\operatorname{Sin} A \times \operatorname{fin} C: R^{2}::-\operatorname{cof} \frac{\overline{A+} \bar{C}+B}{2} \times \operatorname{cof} \frac{\overline{A+C}-B}{2}: \operatorname{fin}^{2} \frac{1}{2} \mathrm{AC}$ $\operatorname{Sin} \mathrm{A} \times \mathrm{fin} \mathrm{C}: \mathrm{R}^{2}:: \cos \frac{B+\bar{A}-\bar{C}}{2} \times \cos \frac{B-\bar{A}-\bar{C}}{2}: \operatorname{cof}^{2} \frac{1}{2} \mathrm{AC}$
$\operatorname{Cor} \frac{B+\overline{I-C}}{2} \times \cos \frac{B-\overline{A-C}}{2}: \mathrm{R}^{2}::-\operatorname{cof} \frac{\overline{A+C}+B}{2} \times \operatorname{cor} \frac{\overline{A+C}-B}{2}: \tan ^{2} \cdot \mathrm{AC}$
Tang $\frac{\mathrm{T}}{\mathrm{T}} \mathrm{AC}$: tang $\frac{B C+B A}{2}:: \operatorname{tang} \frac{B C-B A}{2}: \operatorname{tang} \frac{C D-D A}{2}$
$\operatorname{Sin}(A+C): \operatorname{fin}(A-C):: \operatorname{tang} \frac{\mathrm{T}}{\because} \mathrm{AC}:$ tang $\frac{C D-D A}{2}$
$\operatorname{Cot} \frac{\mathrm{r}}{2} \mathrm{~B}: \tan \frac{A+C}{2}:: \operatorname{tang} \frac{A-C}{2}: \operatorname{tang} \frac{C D B-D B A}{2}$
$\operatorname{Sin}(\mathrm{BC}+\mathrm{BA}): \operatorname{fin}(B C-B A):: \cot \frac{\mathrm{r}}{2} \mathrm{~B}: \tan \frac{C B D-D B A}{2}$
Tang $\frac{B C+B A}{2}: \operatorname{tang} \frac{B C-B A}{2}:: \operatorname{tang} \frac{A+C}{2}: \operatorname{tang} \frac{A-C}{2}$
$\operatorname{Sin} \frac{A+C}{2}:$ fin $\frac{A-C}{2}:: \operatorname{tang} \frac{1}{2} \mathrm{AC}: \operatorname{tang} \frac{B C-B A}{2}$
$\operatorname{Cor} \frac{A+C}{2}: \operatorname{cor} \frac{A-C}{2}:: \operatorname{tang} \frac{5}{2} \mathrm{AC}: \operatorname{tang} \frac{B C+B A}{2}$
$\sin \frac{B C+B A}{2}: \operatorname{fin} \frac{B C-B A}{2}:: \cot \frac{1}{2} \mathrm{~B}: \operatorname{tang} \frac{A-C}{2}$
$\operatorname{Cof} \frac{B C+B A}{2}: \operatorname{cof} \frac{B C-B A}{2}:: \cot \frac{T}{2} \mathrm{~B}: \operatorname{tang} \frac{A+C}{2}$.
(46) In any plane triangle $A B C$, Fig. XVI. we have (22)
$\mathrm{AB} \times \mathrm{BC}: \mathrm{R}^{2}::\left(\frac{A C+\overline{A B-B C}}{2}\right) \times\left(\frac{A C-\overline{A B-B C}}{2}\right): \mathrm{fin}^{2} \frac{1}{2} \mathrm{~B}$
$A B \times B C: R^{\prime}:\left(\frac{\overline{A B}+B C}{2}+A C\right) \times\left(\frac{\overline{A B+B C}-A C}{2}\right): \operatorname{cof}^{2} \frac{1}{2} \mathrm{~B}$
$(\overline{A B}+\overline{B C}+A C) \times(\overline{A B+B C}-A C): \mathrm{R}^{2}::(A C+\overline{A B} \overline{B C}) \times(A C-\overline{A B} \overline{-B C})$
: tang ${ }^{2}$ IB
$A C: B C+B A:: B C-B A: C D-D A$
$\sin (A+C): \operatorname{fin}(A-C):: A C: C D-D A$
$B C+B A: B C-B A:: \tan \frac{A+C}{2}: \tan r-A-C:: \cot \frac{B}{2}: \operatorname{tang} A-C$
$\therefore \cot \frac{\mathrm{F}}{\sim} \mathrm{B}: \operatorname{tang} \frac{C D B-D B A}{2}$
$\operatorname{Sin} \frac{A+C}{2}: \operatorname{fin} \frac{A-C}{2}:: A C: B C-B A$
$\operatorname{Cor} \frac{A+C}{2}: \operatorname{cof} \frac{A-C}{2}: A C: \mathrm{BC}+\mathrm{BA}$.

IV.

THE IIYPERBOLA AS CONNECTED WITII THE LOGARITHMS.

1. WhiLe a ftraight line PM (Fig. XVIi.) moves parallel to itfelf along the indefinite ftraight line CID with a velocity always proportional to the diftance of its extremity P from a fixed point C, let its other extremity M approach to or recede from P , fo that PM may defcribe equal fpaces in equal times: The point P will deferibe a part PP^{\prime} or $\mathrm{P}^{\prime}{ }^{\prime}$ of the ftraight line CD , while the point M defcribes a correfponding part MM^{\prime} or $\mathrm{M} m$ of the curve $m^{\prime} \mathrm{SM}^{\prime}$.
2. If the motion is fuppofed to have begun at P , the arca $\mathrm{PM} \mathrm{M}^{\prime} \mathrm{P}^{\prime}$ or $\mathrm{PM} m n^{\prime} p^{\prime}$ is the logarithm of the abfcifs CP^{\prime} or $\mathrm{C}^{\prime}{ }^{\prime}$.
3. In order that equal fpaces may be deferibed in equal times, it is evident that the greater or fmaller the abfcifs CP^{\prime} or $\mathrm{C} p^{\prime}$ ' becomes with regard to CP , the frmaller or greater muft the ordinate $\mathrm{P}^{\prime} \mathrm{M}^{\prime}$ or $p^{\prime} n^{\prime}$ become with regard to PM ; Therefore $\mathrm{CP}^{\prime}: \mathrm{CP}:: \mathrm{PM}: \mathrm{P}^{\prime} \mathrm{M}^{\prime}$, or $\mathrm{C}^{\prime}: \mathrm{CP}$::PM: $p^{\prime} m^{\prime}$; Thercfore the product of any abfcifs by the correfpondent ordinate is a conftant quantity: Therefore
4. The curve $m^{\prime} \mathrm{SM}^{\prime}$ is a hyperbola having CD for one of its aflymptotes, and C_{ε}, parallel to the ordinates, for the other. K k
5. Trom this manner of conceiving the generation of the hyperbola wight be deduced the proparties of that curve and of the logarithms. That Cil and Cos, for inftance, touch the curve at an infinite diftance from C appears from this: When the aufcifs is infinite, the ordinate muft be zero, and when the abfeifs is zero, the ordinate muft be infinite, in order that their product may equal the finite quantity PM \times CP: And that the logarithm of CP is zero appears fiom this ; PM is length without breacth and therefore no fpace.
6. Let $\mathrm{Ci}=a, \mathrm{PN}=\mu, \mathrm{Pl}^{\prime}=x$ and $\mathrm{P}^{\prime} \mathrm{M}^{\prime}=y$; we have $(3) y=\frac{o u}{\frac{a}{4+\lambda}}, \mathrm{o}^{\prime \prime}$, developing the fraction $\frac{a}{a+x}$ in the manner firt taught by Nicolas Nicrcator,

$$
\mathrm{Y}=\mu\left(\mathrm{I}-\frac{8}{a}+\frac{\frac{v}{2}^{2}}{a^{2}}-\frac{x^{3}}{a^{3}}+\& \mathrm{C}\right)
$$

7. It is evident that the fpace PMMP' is equal to the fum of all the ordinates $y^{\prime}+y^{\prime \prime}+y^{\prime \prime \prime}+\& c$. on the abfifs x. If the abfifs is fuppofed to be divided into an infinite number of infinitely fimall and equal parts, the abfeinix correfonding to the ordinates $j^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}$, \&ic. may be called $1,2,3$, \&ic: therefore (6)

$$
\begin{aligned}
& y^{\prime}=\dot{=}\left(\mathrm{I}-\frac{1}{a}+\frac{1}{a^{2}}-\frac{1}{a^{3}}+\varepsilon_{i c}\right) \\
& \text { - } y^{\prime \prime}=\mu\left(\mathrm{r}-\frac{2}{a}+\frac{2^{2}}{a^{2}}-\frac{2^{3}}{a^{3}}+\varepsilon_{i c} \mathrm{c}\right) \\
& y^{\prime \prime \prime}=c:\left(1-\frac{3}{a}+\frac{3^{2}}{a^{2}}-\frac{\frac{3}{3}^{3}}{a^{5}}+\mathbb{S}\right) \\
& y^{r}=\dot{\prime}=\mu\left(1-\frac{r}{a}+\frac{r^{2}}{\omega^{2}}-\frac{v^{3}}{\omega^{\prime}}+\varepsilon_{i c}\right)
\end{aligned}
$$

therefore

[^22]$$
\text { A P P E N D I X. } 120
$$

Noñ, as was firf demonftrated by Wrallis*, the fum $\mathrm{x}^{*}+2^{*}+3^{*}+8 \times c$. continued to infnity, that is to x^{n} in this cafe, being equal to $\frac{x+t}{n+1}$; we have

$$
P M_{M} P^{\prime}=\mathrm{L}(a+x)=\mu\left(x-\frac{x^{2}}{24}+\frac{x^{3}}{33^{2}}-\mathcal{S} C\right)
$$

and, if x is negative,

$$
P N I m^{\prime} p^{\prime}=1(a-x)=-\mu\left(x+\frac{x^{2}}{2 \cdot}+\frac{x^{3}}{j^{3}}+\delta(c)\right.
$$

8. The quantity μ depends on the angle $D C_{s}=$ dformed by the arfymtotes and the diftance $M N=m$ of the point M of the curve from the aflymptote CD ; as is evident from its value $\mu=\frac{\text { riat }}{\text { Sim }}$, where r die notes the radius of the circle.

* Arith. In:init.

```
V.
```

```
PROPERTIES OF THE LOGARITHMIC.
```

```
PROPERTIES OF THE LOGARITHMIC.
```

1. While two points A and B are in S, (Fig. XVIII.) moving ia oppofite directions along the indefinite ftraight line CSD with a velocity always proportional to their diftance from a fixed point C , let all the points in SD and all the points in SC move in oppofite directions perpendicularly to CSD with any uniform velocity; and in the inftant that A or B pafles through any point P^{\prime} or p^{\prime} let the point which left P^{\prime} or p^{\prime} fop in M^{\prime} or m^{\prime}; A and B will defcribe the axis, while the points that move perpendicular to it, defcribe all the ordinates, or the area of the curve n^{\prime} 'SM'.
2. This curve is called the logarithmic, becaufe its ordinate PMI, P^{\prime} M^{\prime} \&c. are the logarithms of its abfciffe $\mathrm{CP}, \mathrm{CP}^{\prime}, \& \mathrm{cc}$.
3. The ordinate C_{s}, at the finite extremity C of the axis, is an affymptote to the curve : for, as the point that moves from S towards C cannot arrive at C in any finite time, the point that left C will move on for ever.
4. The ordinate PM, a tangent to the curve at whofe extremity MI meets the point C , is called the modulus of the logarithmic. We fhall call PM the logarithmic modulus and CS the numeric modulus.
3.32 $\quad . \quad A \quad P \quad$ P E N D I X.
5. Let the portions P_{π} and $\mathrm{P}^{\prime} \pi^{\prime}$ of the axis be fuppofed deferibed in equal times; and let the fraight lines Mv, My' be drawn perpendicular To the ordinates $\pi \mu, \pi^{\prime} \mu^{\prime}:$ we have $\mathrm{CP}: \mathrm{CP}^{\prime}:: \mathrm{P}_{\pi}: \dot{\mathrm{P}}_{\pi^{\prime}}^{\prime}$ and $\nu_{\mu}=i^{\prime} \mu_{0}^{\prime}$: 3ut, if the equal times are infinitely fnall, the arcs $M \mu$ and $\mathrm{NI}^{\prime} \mu^{\prime}$ are ftraight lines and the right angled triangles CPM and Mve, fimilar ; confequently $\mathrm{CP}: \mathrm{PMI}:: \mathrm{M}$ or $\mathrm{P}_{\pi}: \nu \mu_{\nu}$; therefore $\mathrm{CP}^{\prime}: \mathrm{PM}:: \mathrm{P}_{\tau^{\prime}}^{\prime}: \nu \mu$ or $\iota^{\prime} \mu_{\prime}^{\prime}$.
6. To draw a langent to any point M' of the Lugaritbmic. Upon the ordiante $P^{\prime} \mathrm{Il}^{\prime}$ take $\mathrm{P}^{\prime} \mathrm{L}^{\prime}=\mathrm{P}^{\prime} \mathrm{M}$; join the points C and L^{\prime} and draw parrallel to CL^{\prime} the flraight line $\mathrm{MI}^{\prime} \sigma^{\prime}$ meeting the axis in the point $\tau^{\prime} ; r^{\prime} \mathrm{M}^{\prime}$ tonclies the curve in the point M^{\prime} : For fince (5) CP' PM or $\mathrm{P}^{\prime} \mathrm{L}^{\prime}:: \mathrm{P}^{\prime}{ }^{\prime}$ or $M I^{\prime} v^{\prime}: v^{\prime} u^{\prime}$, the triangles $C P^{\prime} L^{\prime}$ and $M^{\prime} v^{\prime} \mu^{\prime}$ are fimilar; therefore $M l^{\prime} \mu^{\prime}$ is parrallel toCL'; therefore \&xc : Hence,
7. 'The ordinates to the affymptote, $\mathrm{MQ}, \mathrm{MQ}^{\prime}$, \&c. have for their lo-马arithms its abfifix $\mathrm{CQ}, \mathrm{CQ}^{\prime}$: and
8. The fubtangents $\mathrm{CO}, \mathrm{C}^{\prime} \mathrm{Q}^{\prime}, \& \mathrm{c}$. upon the aflymptote are all equal to the logatithmic modulus PM.

9 . The fubtangent $T^{\prime} P^{\prime}$ upon the axis is to the ordinate $\mathrm{P}^{\prime} \mathrm{M}^{\prime}$ as the abfcifs CP^{\prime} is to the modulus PM ; For the triangles $\mathrm{T}^{\prime} \mathrm{P}^{\prime} \mathrm{M}^{\prime}$ and $\mathrm{C}^{\prime} \mathrm{P}^{\prime} \mathrm{M}^{\prime}$ are fimilar: Hence,
10. The fubtangents upon the axis are to each other as the products of the abfcifix and ordinates.
II. The fubnormal $\mathrm{P}^{\prime} \mathrm{N}^{\prime}$ upon the axis is to the ordinate as the logarithmic modulus to the abfcifs: For the triangles $\mathrm{CP}^{\prime} L^{\prime}$ and $\mathrm{M}^{\prime} \mathrm{P}^{\prime} \mathrm{N}^{\prime}$ are fimilar: Hence,
12. The fubnormals upon the axis are to each other as the quotients. of the ordinates and abfciffx.
${ }_{3}$ The fubtangent is to the fubnormal as the fquare of the abfeifs to the fquare of the logarithmic modulus.
14. Let $\mathrm{P}^{2} \mathrm{M}=v, \mathrm{CP}^{\prime}=\approx$ and $\mathrm{P}^{\prime} \mathrm{M}^{\prime}=y$: and let $z^{2}, \approx^{2}, z^{3}, \ldots z^{n}$ be any number of abfciflix in geometrical progreffion; $S^{\prime}, S^{\prime \prime \prime}, S^{\prime \prime \prime \prime}, \ldots S$, the correfpondent fubtangents, and $\sigma^{\prime}, \sigma^{\prime \prime}, \sigma^{\prime \prime \prime} \ldots . \sigma^{\prime \prime}$, the correfpandeint fubnormals upon the axis:-we have, (10) and (12)
$n(n+1)(2 n+1) y^{2}=6\left(\mathrm{~S}^{\prime} \sigma^{\prime}+\mathrm{S}^{\prime \prime} \sigma^{\prime \prime}+\mathrm{S}^{\prime \prime \prime} \sigma^{\prime \prime \prime}+\cdots+\mathrm{S}^{n} \sigma^{n}\right)$
$\frac{z^{2}}{\mu_{c}^{2}}\left(\frac{1+z^{\prime \prime}}{1+\approx}\right)\left(\frac{1-z^{n}}{1-z}\right)=\frac{S^{\prime}}{\sigma^{\prime}}+\frac{S^{\prime \prime}}{\sigma^{\prime \prime}}+\frac{S^{\prime \prime \prime}}{\sigma^{\prime \prime \prime}}+\ldots . .+S_{\sigma}^{n}$
$y^{2 n}=\frac{S^{\prime} \sigma^{\prime}}{1^{2}} \times \frac{S^{\prime \prime} \sigma^{\prime \prime}}{2} \times \frac{S^{\prime \prime \prime}}{3^{2}} \times \cdots \cdots \times \frac{S^{n} \sigma^{n}}{{ }^{\prime 2}}$
$\left(\frac{z^{n \times 1}}{\mu^{2}}\right)^{n}=\frac{S^{\prime}}{\sigma^{\prime}} \times \frac{S^{\prime \prime}}{\sigma^{\prime \prime}} \times \frac{S^{\prime \prime \prime}}{\sigma^{\prime \prime \prime}} \times \ldots \ldots \times \frac{S^{n}}{\sigma^{n}}$
15. Let the numeric modulus $\mathrm{CS}=m$ and $\mathrm{SP}^{\prime}=x$, the denominations of PM and $\mathrm{P}^{\prime} \mathrm{M}^{\prime}$ continuing as before: we have $\mathrm{P}^{\prime}{ }^{\prime}=\dot{x}$ and $b^{\prime} \mu^{\prime}=\dot{y}$. Now $m+x: \mu:: \dot{x}: \dot{y},(5)$; therefore $j=\frac{\dot{\mu}}{m+x}$; or if $m=1 \quad y^{\prime}=\mu \cdot \dot{x}\left(\frac{x}{4+x}\right)=$ $\mu \dot{x}\left(1-x+x^{2}-x^{3}+\& \cdot c\right)$ and therefore

$$
y=\mu\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-8 \mathrm{c}\right)=\log \cdot(1+x) .
$$

16. Let the area of any portion S'M'P' of the curve $=A$: whe have
 $\int_{j} \approx=\int_{\mu} \dot{\approx}=\mu z$; therefore $A=z \eta-\mu z+C$: but when $A=0$, then $\approx=\pi$ and $y=0$; therefore $0=-\mu m+\mathrm{C}$; therefore $\mathrm{C}=\mu m$ and $\mathrm{A}=\tilde{}=(y-\mathrm{l})+$ μm, that is
17. The area of any portion of the logarithmic is equal to the rectangle under the abfcifs and the difference of the ordinate and the logarithmiç
sarithmic modulus, torether with the rectangle under the moduli: Hence
18. The rectangle CL, under the moduli, is equal to the area SMP contained by the logarithmic modulus PM, the portion of the axis MS, and the arc SM ; or to the area Sm C contained by the numeric modulus SC , the affymptote C_{f}, and the infinite branch $m \mathrm{~S}$ of the curve.
FI N I S.

LISTofBOOKS,

QUOTED or CONSULTED, to ELUCIDATE

THE
LIFE ANDWRITINGS,
of

J O H N N A P I ER

OF

MERCHISTON.

A
RCIIMEDIS Syrucafani Arenarius, Eec. Eutocii Afcalonitæ in Hane comment. cum verfione et notis Joh. Wallis.
Dictionaire H liforique et Critique par M. Pierre Layle. A Rotterdam, 1720. Folio paffim.
Balcarres' Memoirs.
Bernoulli Ars conjectandi et tractatus de rericbus infinitis. B.nflea, 1713.4to.

- Opera Omnia. Laufannze ct Genevr. 1742.

Biographia Pritannica.
Bofcovich de Cycloide et Logiftica.
Arithmetica Logarithmica five logarithmorum chiliades triginta; pro numeris maturali ferie crefeentibus ab unitate ad 20.000 it a 90.000 a.l 100.000 : quorum ope mul1.a perficimutur arithmetica problemata et f, comerica. lios nuneros primus invenit clarifinums vir Johannes Neperus baro Merchifonii: cos attem cx ciulden fensentis mutavat, coramque ortum et ufum illuitravit Henricus lbriggius, in celcberrima Academia Oxonionli Gcomenix Pro-
feffor Savilianus. Deus nobis ufuram vitre dedit et ingenii, tanquam pecunix nulla prantituta die. Londini 1624 . Folio.
Bocthius de Arithmetica.
Caufaboni Epiftolx.
Chrittophori Clavii Bambergenfis, e Soc. Jcfu, Opera Mathematica. Moguntix 1611. Folio.
-_ de Aftrolabio. Yol. III.
Chanbers' Dictionary, 2 vols Folio.
Craufurd's Peerige of Scotland.

- lives of the ofiicers of State.

Crugerus Pref. in Praxin Trig.
Nouveau Dict. Hift. et Crit. pour fervir de fupplement au Dict. de M. Bayle, par Jaques George de Chauffepie. Amfterdans. 1756. Folio paflin.
Douglas's l'eerage of Scotland.
I) uteus inquiry.

Exercitationes Gcometricx. Auct. Jacob. Gregory. 1668.
Mervarli ab IHohenburgla opera. 1610.
Nathematical lables containing Common, ITpperbolic and Logiftic logarithms; alfo fines, 'Langente

B O O K S.
tangents, fecants and verfed lines, both natural and hararithmic, Eic. Wh which is preIxed a large and rrigimal hifiory of the difcorerics and writing relating to thofe fubjeetses. By Charts Hutron, LLDD. F. R.S. and l'rof. Mahh Ruyal Acasl. Woolwich. Lowd 1;95.
Ilumes llittory of the Stuarts.
Reill cele I.og.
Joannes Keppleri aliorumque Epiftolx mutur. Lipuiz 1718 . Folio pamlim.

- Ephemacrides nova motuum Coeleft:r:m ab ammo $16: 7$.
Leyburnes Recreations. Foiio. 1694.
Lilly's Life. Inndon, $1 / 21$. Ovo.
Moreland Sir Samuel.
Iiftoire des Mathenatiqnes par M. Montucla de l'Acalemie Royale des Sciences \& lielles-Lettres de l'rulfe. 2 tomes quarto. a Paris 1758. paffim.
Newtoni l'rincipia. Amft. 1/23.
Phil. Trantict. London.
Nicolai Raymari Urfi Dithmarli Fundamentum Altrunomicum, id eft, nova doćtriua linuuns et riangulorum eaque abfolutiffima et perfectilimas ejufyue ulus in aftronomia calculatione et obfervatione. Zargentorati. 1588. 4 to.
Vitie quorundam erudiffimorum et illuftrium firorum, ©riptore Thoma Smith. Londini 1707. Commentariolus de vita et friptis D. Henrici Briggii.
Stifellii Arithnetica integra.
Tabulte Rudulphinx, quibus Aftronomicx fcientire tempornm ionginquitate collapfa reftanrat o continetur; a lleenice illo aftronomurum Tychone, ex illuftri et generofa Braheormm in regno Danire familia oriunclo equite, Eic, \&ic. curante Joanni Kepplero. Ulmæ, anno 1627. Folio.
Sir Thomas Urquhart of Cromertie's Triffotetras. London, 1650.410.
——Tract-. Elinbargh, 1774. 8vo.
Voffius de Nathemat.
Reid's Eflay on the Log.
Wallifi Opera.
Dughheds' Clavis Mathematica. Oxford, 1677. 8ro.

Worcefter Marquis of, his Scantiings of modern Inventions.
Craig's quadrature of the logarithmic curve.
Kabilologia fens numerationis per virgulas libri duce. Edinburgi, 1617.12120.
A plain difcovery of the whole Revelation of St John, Ecc. by John Napier of Merchifton. Edinburgh, 593 . ato. hy Andio IIart.
Mirifici Logarithmorum Canonis deferiptio Sce, Authore Joanne Nepero Barone Merchitonii Edinburga 1014 apud And. Ilart.
Initatio Nepeirea a Hemico Briggs. MSS․ 1614. in the Britifl Nufeum.

Ayfongles Cat. of the MSS in the Lritith Muleum. London. 2 vols 4 to.
l'erault des hommes illuftres.
Tychonis Brahxi vita, Gafiendo Authore. Paritio $1054 \cdot 4$ to.
Pitifci Trigonometria.
The lives of the Mrofenors of Grefham College by John Ward, Irof. of Rhctoric in Grethan College. F. R. S. London 1740. Folio.
Logarithmotechnia five metholus conftruendi Logarithmos nova accurata et facilis; feripto antelace communicato, anno lc. 1667 nonis Augulti: cui nunc accedit vera quadratuia hyperbolre et inventio fumma logarithmornm, Auctore Niculas Murcatore IIolfato, e Societate Regia Londini. 1668.

Developpement Nouvean de la partu elementaire des Alathematigues prife dans toute fon etendue: par Louis Lertrand. a tomes Genere, 1778. 4to.
Trigonometria Britannica. Goude 1633 . Fol.
Memoires de Mathematique et die Phylique de l'annee 175 万. tirces des regiftes de l'Academic Rojale des Sciences a Amfterdam 1768. La trigonometric fpherique reduite a quatre analogies par M. Pingre.
Sherwin's 'Tables. 1771.
Encyclopedie on Dictionaire :2ifonne des fciences des arts et des meriers. Neufchaltel, 1765 . Fol. pafim.
Rogeri Cotefii Harmonia Menfurarum. Cantabrigix, 1722.
Abridgement of the Philofophical Tranfacti-

LISTOFBOOKS.

ous by Rowhorp at Motte. 5 vols ito. paflim.
Athen:e Oxonienfes, by Anthony Wood. 2 vols Folio. London, 1001 .
Whods Hift. et Amt. Oxon. 2 vols Folio. Oxoni:c, 172.1.
Iables portatives de Logarithmes, publices a Lomdres par Gardiner, augmentes et perfectinnees dans lear difpoftion par MI. C'a!let, et corripees avec hathe forupuleuie exactitude: contenant les logarithmes des nombres depuis 1 jufifu'a $10: 0$ no, les lologarithmes des finus et tangentes, de deconde en ieconde pour les deux premiers degres et de 10 en 10 fecondes pour tous les degres dhe puart de cercle; precedees d'un precis elementaire firr l'explication et loulage des logarithmes et for lear applicacation aux calculo d'interets, a la Ceome-
tric-pratique, a l'Aftenomie of a la NaviEation; fuivies de piuficurs tables intereffantes ct d'un difcours qui en facilite l'ufage. a P'aris, 1,83 .
Univerfale 'rigonometria lineare et logaritmica da Germiniano Rondelli, Prof. di Mat. nello fiudio di Bologna. Bologna, 1;0j.
Philofophical Tranfactions for the year 1695° A molt compendious and facite method for corliructing the logarithms, exemplified and demontrated from the nature of numbers, without any regard to the hyperbola, with a fpeed'y method for finding the numher fron the given logarithm: By E. Halley.
Trig. Plan. et Spher. Elem. item de Natura et Arithmetica logarithmorunatractatus bre.vis. Ozon. 1/23. ©iv.

Siig 1.

fillifiress if $C^{\text {mathed }}$

Piur firrs of \％＂Red

Fillifares rify ulid

frintirirs．sfodmed

Fimilfurse of seltral

Fru！firrs if．．．．Koul

Fruegramsef y yitad

峌バ

参 11

1／119．III．

Fimbjors afi＂\＃lery

Fiur fores oficeufind

1／19． 1 ．

ith. VIII.

Fingiated for the Life of Napmak
Matelli.

Unlversity ol Callfornla
SOUTHERN REGIONAL LIBRARY FACILITY
405 Hilgard Avenue, Los Angeles, CA 90024-1388
Return this material to the llbrary
from which It was borrowed.
-

[^0]: *Printed by Andrew Hart, 4to. + Ayfcongles lat. v. 1. p. 155. See Appendix No, x.

[^1]: - Avforugh's Cat. vol. 1. p. 3^{80}.

[^2]: - In the L"niverfiey Lib-ary at Edinburgh, another in the poffefion of the Lord Napicr, aral an Soo print, agraved ly Diarm, where he is reprefented calculating with his boncs.
 \dagger Kicient wive a Chemical Treatife, fill preferved in che family of Napier.

[^3]: -Wallis, Montucla, Erc.

[^4]: * Hanfchii Pref. in Kepl. Epif. † Muntucla Hiftoire Mathematique.

[^5]: - George Joachim, fo called from his native country. Thefe appellatives, fo much ufed after the revival of letters, inake it often difficult to difeoucr the real names of learned men.

[^6]: - Clavius de Aftrolabio, book I. lemma 53.
 \dagger Magini primum mobili, lib. 1. theor. 33. and lib. If. cap. 2.
 \ddagger Quod vero Profthaphærefền tabulus attinet, fcito me totum hunc annum qua parte ct a morbis et a curis fui vacuus in unius martis profhaphxrefibus excentri verfari, nee pudet dicere me foopun nondum attigete. Kepler Epif. p. 171.
 ; Profthaphxretical tables were publifhed by J. G. Herwart, in 3610.

[^7]: * Leg. Canon. defcriptio. in dedic.

[^8]: :IKcpl. Epif. p. 683.

[^9]: \& Rot. Arilhar. P F its m. wuirs for thefe years. Hiitoirc.

[^10]: Wes the teran of ho.. 7 rotas arsifiantis.

[^11]: * Oughtred's Clavis Math. Oxon IC77, Lic. \quad Smith, Briggii vita, and Ward's lives. Art. Briggs.
 \ddagger Voflius (de Nat. Astiun) cited Iy Ward, plares the death of Longomentanus in the year $16_{4} 7$.

[^12]: - Montuela Yifoire des Mathematiques.
 + This method is unfolied, and dedicated to Jufus Iyrgius its innerntor by Rapmar in his $r_{1-1}=$

[^13]: 'lins.

[^14]: －Pubilifined in 162 ．

[^15]: - Inutton's Math Tab.

[^16]: * Appendix, Logarithmic. \quad Montuch,

[^17]: - Jhil. Tranf. for 1605.
 | Kср. Гpin.

[^18]: * De Serie, Infin. Jacobi Bernoull:

[^19]: - Sec Appendix.

[^20]: * Pitifco aliquid tribuo in μ sristan arcuum in angules, et viciltir, Kep. Epif. 293.

[^21]: * This is one of Regiomontanus' propofitions.

[^22]: * Logarithmotechnia

